В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Marinap041744
Marinap041744
20.10.2020 23:19 •  Алгебра

Докажи, что последовательность возрастает: dn=8n/(n+1)

Показать ответ
Ответ:
moto5
moto5
03.10.2020 13:34
Последовательность возрастает, если
d_{n+1}\ \textgreater \ d_n
Докажем, что
\frac{8(n+1)}{(n+1)+1}\ \textgreater \ \frac{8n}{n+1}
Рассмотрим разность

\frac{8(n+1)}{(n+1)+1}- \frac{8n}{n+1}=\frac{8(n+1)(n+1)}{(n+1)(n+2)}- \frac{8n(n+2)}{(n+1)(n+2)}=\frac{8(n+1)(n+1)-8n(n+2)}{(n+1)(n+2)}= \\ \\ =\frac{8n^2+16n+8-8n^2-16n}{(n+1)(n+2)}=\frac{8}{(n+1)(n+2)}\ \textgreater \ 0

Значит,
\frac{8(n+1)}{(n+1)+1}\ \textgreater \ \frac{8n}{n+1}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота