В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Nurana15
Nurana15
17.02.2020 19:23 •  Алгебра

Доказать что не имеет целочисленных решени уравнение y2=3x+5 и уравнение x2=y2+1998

Показать ответ
Ответ:
alisher0901
alisher0901
10.07.2020 13:48
1) y^2=3x+5 x  y целые
1)Предположим что  целые решения существуют.
Пусть y при делении  на 3. дает  остаток  i  (|i|<=3  тк остаток  не превышает модуля  делителя.
(3*n+i)^2=3x+5
9*n^2+6*n*i+i^2=3x+5
9*n^2+6*n*i-3x=5-i^2
откуда  число  5-i^2  должно делится на  3
возможно i=+-1;+-2;+-3
5-i^2=4 , 1 , -4  то  есть  не может делится  на 3. А  значит
мы  пришли к противоречию целых решений нет.
2)Положим что существуют.
 x^2-y^2=1998
 (x-y)(x+y)=1998   тогда x-y и x+y тоже целые числа  
1998  не делится  на 4. А  значит  оба числа x-y и x+y  не могут  быть четными. Раз 1998  четное. То  один  из множителей четный  другой  нет.
То  сумма  чисел x-y и x+y  число  не четное но x-y+x+y=2y -четное то  мы пришли к противоречию. Целых  решений нет.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота