В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
svetlanko2000
svetlanko2000
05.03.2023 08:43 •  Алгебра

Доказать что а в квадрате плюс b в квадрате плюс c в квадрате равно аb плюс bc плюс ac где а d c действительные числа

Показать ответ
Ответ:
ксения23242526
ксения23242526
04.10.2020 07:53

Доказать, что а² + b² + c² ≥ ab + bc + ac, где а, b, c - действительные числа.

Известно, что (a - b)² ≥ 0 ⇔ a² - 2ab + b² ≥ 0 ⇔ a² + b² ≥ 2abАналогично, b² + c² ≥ 2bc и a² + c² ≥ 2acСложим правые и левые части неравенств:(a² + b²) + (b² + c²) + (a² + c²) ≥ 2ab + 2bc + 2ac2a² + 2b² + 2c² ≥ 2ab + 2bc + 2aca² + b² + c² ≥ ab + bc + ac, что и требовалось доказать
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота