В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
lebeckaaanna
lebeckaaanna
30.07.2020 22:13 •  Алгебра

Доказать,что 2х²-6ху+9у²-6х+9≥0 при всех действительных значениях х и у.

Показать ответ
Ответ:
marsel35
marsel35
03.10.2020 19:01
2х²-6ху+9у²-6х+9 = х²+х²-6ху+9у²-6х+9 = (х²-6ху+9у²)+(х²-6х+9) = (х-3у)²+(х-3)²
Любое число в квадрате всегда больше либо равно нулю, следовательно сумма квадратов всегда больше либо равна нулю
то есть 
(х-3у)²≥0,  
(х-3)²≥0, значит (х-3у)²+(х-3)²≥0, следовательно

2х²-6ху+9у²-6х+9≥0  при любых действительных х и у - ч.т.д
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота