Пусть расстояние от в до с равно х км, тогда расстояние от а до в равно х-29 км, все растояние пройденное туристом равно х+х-29=2х-29 км. время, затраченное на путь ав равно (х-29): 3 час, на путь вс равно х: 4, все затраченное время равно \frac{x-29}{3}+\frac{x}{4}=\frac{4(x-29)+3x}{12}=\frac{4x-116+3x}{12}=\frac{7x-116}{12} час. по условию составляем уравнение: (2x-29): \frac{7x-116}{12}=\frac{35}{9}; \\ 12(2x-29)=\frac{35(7x-116)}{9}; \\ 9*12(2x-29)=35(7x-116); \\ 108(2x-29)=245x-4060; \\ 216x-3132=245x-4060; \\ 216x-245x=3132-4060; \\ -29x=-928; \\ 29x=928; \\ x=928: 29; \\ x=32 значит расстояние от в до с равно 32 км, расстояние ав равно 32-29=3 км от а до в турист шел 3: 3=1 час, от в до с 32: 4=8 ч
√(3x-2)^2=(5x-8)^2
(3х-2) = 25x^2-80x+64
25x^2-80x+64-3x+2=0
25x^2-83x+66=0
x1=2
x2=1.32
Проверка:
√(3*2-2)=5*2-8
√(6-2)=10-8
√4=2
2=2
Следовательно, х=2 - корень
Проверяем второй корень:
√(3*1,42-2)=5*1,42-8
√2,26=-0,9 - второй корень не подходит
ответ: х=2
2. √(2x^2-3x+2)=√16-8x+x^2
2x^2-3x+2=16-8x+x^2
2x^2-3x+2-16+8x-x^2=0
x^2+5x-14=0
х1=2
х2=-7
Проверка:
√(2*2^2-3*2+2)=√16-8*2+2^2
√4=√4
2=2
Следовательно, х=2 - корень
Проверяем второй корень:
√(2(-7)^2-3*(-7)+2)=√16-8*(-7)+(-7)^2
√121 = √121
11=11
Следовательно, х=-7 - корень
ответ: х1=2, х2=-7