1) Найдем на данном отрезке критические точки f ′(х) = 0. Получим: f ′(х) = 4 * х; f ′(х) = 0; 4 * х = 0; х = 4 : 0; х = 0. 2) число 0 принадлежит промежутку -3 ≤ x ≤ 2; 3) Вычисляем значения функции в критической точке и на концах промежутка: f (-3) = (-3)^2 - 4 + 1 = 9 - 4 + 1 = 6; f (0) = 0^2 - 4 + 1 = 0 - 4 + 1 = -3; f (2) = 2^2 - 4 + 1 = 4 - 4 + 1 = 1; 4) Из вычисленных значений выбираем наибольшее значение: f (х) = f (-3) = 6. 5) Из вычисленных значений выбираем наименьшее значение: f (х) = f (0) = -3.
а) Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
В решении.
Объяснение:
Дана функция y=√x
а) Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
у=√х
1) А(63; 3√7)
3√7 = √63
3√7 = √9*7
3√7 = 3√7, проходит.
2) В(49; -7)
-7 = ±√49
-7 = -7, проходит.
3) С(0,09; 0,3)
0,3 = √0,09
0,3 = 0,3, проходит.
б) х ∈ [0; 25]
y=√0 = 0;
y=√25 = 5;
При х ∈ [0; 25] у∈ [0; 5].
в) Найдите значения аргумента, если у∈ [9; 17]
у = √х
9=√х х=9² х=81;
17=√х х=17² х=289.
При х ∈ [81; 289] у∈ [9; 17].