A) x(n) = 2/(3/2)^n = 2*(2/3)^n; lim x(n) = 0 Если число, которое больше 0, но меньше 1, возводят в степень, то при n->oo получается 0. Если это число больше 1, то при n->oo будет +оо. Если число равно 1 - это неопределенность вида 1^oo б) x(n) = (2n - 1)/(5n + 2). lim x(n) = 2/5. Делим числитель и знаменатель на n, получаем (2 - 1/n) / (5 + 2/n) Числа 1/n и 2/n при n ->oo равны 0. Остается 2/5. в) x(n) = (n^2 + 4n)/(3n^2 - 2n + 1), lim x(n) = 1/3. Точно также, как в б), делим всё на n^2. Получается (1 + 4/n) / (3 - 2/n + 1/n^2) Все дроби при n -> oo равны 0. Остается 1/3.
Наибольшая экономия будет, когда площадь страницы будет наименьшей. Итак у-площад страницы, а х-ширина страницы, тогда ширина текста -(х-4), высота текста -384/(х-4), высота страницы -(384/(х-4))+6. Тогда у=х (384/(х-4)+6), у=)(6х^2-360х)/(х04. Площадь страницы будет наименьшей, когда ее производная будет равно 0. у'=((12х-360) (х-4) -(6х^2-360х))/(х-4) ^2, у'=0->12х^2-48х-360х+14406х^2+360х=0, х1=-12 не имеет смысла, х2=20, тогда ширина текста -20-4=16, высота страницы 24+6=30. Таким образом размер страницы: ширина -20см, высота -30см
Если число, которое больше 0, но меньше 1, возводят в степень,
то при n->oo получается 0.
Если это число больше 1, то при n->oo будет +оо.
Если число равно 1 - это неопределенность вида 1^oo
б) x(n) = (2n - 1)/(5n + 2). lim x(n) = 2/5.
Делим числитель и знаменатель на n, получаем
(2 - 1/n) / (5 + 2/n)
Числа 1/n и 2/n при n ->oo равны 0. Остается 2/5.
в) x(n) = (n^2 + 4n)/(3n^2 - 2n + 1), lim x(n) = 1/3.
Точно также, как в б), делим всё на n^2. Получается
(1 + 4/n) / (3 - 2/n + 1/n^2)
Все дроби при n -> oo равны 0. Остается 1/3.
когда ее производная будет равно 0. у'=((12х-360) (х-4) -(6х^2-360х))/(х-4) ^2, у'=0->12х^2-48х-360х+14406х^2+360х=0, х1=-12 не имеет смысла, х2=20, тогда ширина текста -20-4=16, высота страницы 24+6=30. Таким образом размер страницы: ширина -20см, высота -30см