В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Reaper655
Reaper655
15.11.2020 21:06 •  Алгебра

Дифференциальная уравнения 3.11
y''' * sin^4 (x) = sin(2x)


Дифференциальная уравнения 3.11 y''' * sin^4 (x) = sin(2x)

Показать ответ
Ответ:
Gosha210403
Gosha210403
15.10.2020 12:59

ответ: y=ln/sin(x)/+C1*x²/2+C2*x+C3.  

Объяснение:

Перепишем уравнение в виде d³y/dx³=2*sin(x)*cos*x)/sin⁴(x), или d³y/dx³=2*cos(x)/sin³(x). Отсюда y"=2*∫cos(x)*dx/sin³(x)=2*∫d[sin(x)]/sin³(x)==1/sin²(x)+C1. Далее, y'=-∫dx/sin²(x)+C1*∫dx=ctg(x)+C1*x+C2=cos(x)/sin(x)+C1*x+C2 и тогда y=∫cos(x)*dx/sin(x)+C1*∫x*dx+C2*∫dx=∫d[sin(x)]/sin(x)+C1*∫x*dx+C2*∫dx=ln/sin(x)/+C1*x²/2+C2*x+C3.  

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота