Перепишем уравнение в виде d³y/dx³=2*sin(x)*cos*x)/sin⁴(x), или d³y/dx³=2*cos(x)/sin³(x). Отсюда y"=2*∫cos(x)*dx/sin³(x)=2*∫d[sin(x)]/sin³(x)==1/sin²(x)+C1. Далее, y'=-∫dx/sin²(x)+C1*∫dx=ctg(x)+C1*x+C2=cos(x)/sin(x)+C1*x+C2 и тогда y=∫cos(x)*dx/sin(x)+C1*∫x*dx+C2*∫dx=∫d[sin(x)]/sin(x)+C1*∫x*dx+C2*∫dx=ln/sin(x)/+C1*x²/2+C2*x+C3.
ответ: y=ln/sin(x)/+C1*x²/2+C2*x+C3.
Объяснение:
Перепишем уравнение в виде d³y/dx³=2*sin(x)*cos*x)/sin⁴(x), или d³y/dx³=2*cos(x)/sin³(x). Отсюда y"=2*∫cos(x)*dx/sin³(x)=2*∫d[sin(x)]/sin³(x)==1/sin²(x)+C1. Далее, y'=-∫dx/sin²(x)+C1*∫dx=ctg(x)+C1*x+C2=cos(x)/sin(x)+C1*x+C2 и тогда y=∫cos(x)*dx/sin(x)+C1*∫x*dx+C2*∫dx=∫d[sin(x)]/sin(x)+C1*∫x*dx+C2*∫dx=ln/sin(x)/+C1*x²/2+C2*x+C3.