Пусть один килограмм огурцов стоит х тыс. рублей, тогда один килограмм помидоров стоит (х + 0,2) тыс. рублей. Стоимость 1,8 кг огурцов равна 1,8х тыс. рублей, а стоимость 2,4 кг помидоров - 2,4(х + 0,2) тыс. рублей. Известно, что за 1,8 кг огурцов и 2,4 кг помидоров заплатили (1,8x + 2,4(x + 0,2)) тыс. рублей или 2,16 тыс. рублей. Составим уравнение и решим его.
1,8x + 2,4(x + 0,2) = 2,16;
1,8x + 2,4x + 0,48 = 2,16;
4,2x = 2,16 - 0,48;
4,2x = 1,68;
x = 1,68 : 4,2;
x = 0,4 (тыс. руб.) - стоит 1 кг огурцов;
x + 0,2 = 0,4 + 0,2 = 0,6 (тыс. руб.) - стоит 1 кг помидоров.
ответ:Вот ответ!
Объяснение:
Пусть один килограмм огурцов стоит х тыс. рублей, тогда один килограмм помидоров стоит (х + 0,2) тыс. рублей. Стоимость 1,8 кг огурцов равна 1,8х тыс. рублей, а стоимость 2,4 кг помидоров - 2,4(х + 0,2) тыс. рублей. Известно, что за 1,8 кг огурцов и 2,4 кг помидоров заплатили (1,8x + 2,4(x + 0,2)) тыс. рублей или 2,16 тыс. рублей. Составим уравнение и решим его.
1,8x + 2,4(x + 0,2) = 2,16;
1,8x + 2,4x + 0,48 = 2,16;
4,2x = 2,16 - 0,48;
4,2x = 1,68;
x = 1,68 : 4,2;
x = 0,4 (тыс. руб.) - стоит 1 кг огурцов;
x + 0,2 = 0,4 + 0,2 = 0,6 (тыс. руб.) - стоит 1 кг помидоров.
ответ. 0,6 тыс. рублей
Based on two different cases:
x
=
π
6
,
5
π
6
or
3
π
2
Look below for the explanation of these two cases.
Explanation:
Since,
cos
x
+
sin
2
x
=
1
we have:
cos
2
x
=
1
−
sin
2
x
So we can replace
cos
2
x
in the equation
1
+
sin
x
=
2
cos
2
x
by
(
1
−
sin
2
x
)
⇒
2
(
1
−
sin
2
x
)
=
sin
x
+
1
or,
2
−
2
sin
2
x
=
sin
x
+
1
or,
0
=
2
sin
2
x
+
sin
x
+
1
−
2
or,
2
sin
2
x
+
sin
x
−
1
=
0
using the quadratic formula:
x
=
−
b
±
√
b
2
−
4
a
c
2
a
for quadratic equation
a
x
2
+
b
x
+
c
=
0
we have:
sin
x
=
−
1
±
√
1
2
−
4
⋅
2
⋅
(
−
1
)
2
⋅
2
or,
sin
x
=
−
1
±
√
1
+
8
4
or,
sin
x
=
−
1
±
√
9
4
or,
sin
x
=
−
1
±
3
4
or,
sin
x
=
−
1
+
3
4
,
−
1
−
3
4
or,
sin
x
=
1
2
,
−
1
Case I:
sin
x
=
1
2
for the condition:
0
≤
x
≤
2
π
we have:
x
=
π
6
or
5
π
6
to get positive value of
sin
x
Case II:
sin
x
=
−
1
we have:
x
=
3
π
2
to get negative value of
sin
x
Answer link
Объяснение: