В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия

ДАЮ МАКСИМУМ! Для каждого значения параметра a определить число решений уравнения:x^3-6x^2=ax


ДАЮ МАКСИМУМ! Для каждого значения параметра a определить число решений уравнения:

Показать ответ
Ответ:
5polinka
5polinka
30.08.2020 11:24

Перенесем все влево и вынесем за скобки x:

x^3-6x^2-ax=0,\\\\x(x^2-6x-a)=0

Из этого следует, что уравнение всегда имеет хотя бы одно решение - x=0. Задача сводится к тому, чтобы посмотреть, при каких a будут корни у уравнения x^2-6x-a=0 и сколько их будет. Для этого достаточно рассмотреть 2 ситуации.

1) проверим, при каком значении a корнем уравнения x^2-6x-a=0 будет x=0. Подставляем ноль в уравнение: 0-0-a=0\Rightarrow a=0. При a=0 имеем:

x(x^2-6x)=0, \\\\x\cdot x(x-6)=0;\\\\x^2(x-6)=0

Делаем вывод, что при a=0 уравнение имеет два корня: x=0, x=6.

2) при a\neq 0 уравнение x^2-6x-a=0 не может иметь корень x=0. Уравнение - квадратное. Сразу ищем дискриминант: D=(-6)^2-4\cdot1\cdot(-a)=36+4a.

Здесь рассматриваем 3 случая:

2.1. Если D,  то уравнение x^2-6x-a=0 решений не имеет - следовательно, вторая скобка не будет давать новых решений и у исходного уравнения оно будет единственным.

2.2. Если D=0\Rightarrow 36+4a=0\Rightarrow a=-9, то подставляя вместо параметра -9 в итоге получаем: x^2-6x+9=0, (x-3)^2=0\Rightarrow x=3. Итого "вылез" еще один корень - значит, у исходного уравнения их будет два.

2.3. Если D0\Rightarrow 36+4a0\Rightarrow a-9, то уравнение x^2-6x-a=0 имеет два решения - следовательно, исходное будет иметь уже 3 решения. Заметим, что в это неравенство входит a=0, а мы его проверяли отдельно - при a=0 корней будет 2, а не 3, поэтому из неравенства его нужно исключить.

ОТВЕТ: При a уравнение имеет единственный корень; при a=-9 и a=0 уравнение имеет два различных корня; при a\in(-9; 0)\cup(0; +\infty) уравнение имеет три различных корня.

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота