Франсуа Виет выявил интересную взаимосвязь между коэффициентами приведённого квадратного уравнения и корнями этого же уравнения. Эта взаимосвязь представлена в виде теоремы и формулируется так:
Сумма корней приведённого квадратного уравнения x2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком, а произведение корней равно свободному члену.
То есть, если имеется приведённое квадратное уравнение x2 + bx + c = 0, а его корнями являются числа x1 и x2, то справедливы следующие два равенства:
Знак системы (фигурная скобка) говорит о том, что значения x1 и x2 удовлетворяют обоим равенствам.
√675=15√3 15√3=√225*3 Мы просто раскладываем число 675 на два множителя. Из одного из них должен изыматься корень, из другого нет. Получаем √225*3. Изымаем корень из 225 и получаем 15. Поэтому √675=15√3 Тоже самое с √108. Раскладываем на √36*3. Изымаем корень из 36, получаем 6. 6√3. По сути, вы можете брать любые другие числа (не именно 225 и 36). Если трудно разложить, можно брать любые другие числа (4, 9), из которых изымается корень, и на них делить исходное число. Например: √108=√4*27=2√27=2√3*9=2*3√3=6√3
Франсуа Виет выявил интересную взаимосвязь между коэффициентами приведённого квадратного уравнения и корнями этого же уравнения. Эта взаимосвязь представлена в виде теоремы и формулируется так:
Сумма корней приведённого квадратного уравнения x2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком, а произведение корней равно свободному члену.
То есть, если имеется приведённое квадратное уравнение x2 + bx + c = 0, а его корнями являются числа x1 и x2, то справедливы следующие два равенства:
Знак системы (фигурная скобка) говорит о том, что значения x1 и x2 удовлетворяют обоим равенствам.
Объяснение:
15√3=√225*3
Мы просто раскладываем число 675 на два множителя. Из одного из них должен изыматься корень, из другого нет. Получаем √225*3. Изымаем корень из 225 и получаем 15.
Поэтому √675=15√3
Тоже самое с √108. Раскладываем на √36*3. Изымаем корень из 36, получаем 6. 6√3.
По сути, вы можете брать любые другие числа (не именно 225 и 36). Если трудно разложить, можно брать любые другие числа (4, 9), из которых изымается корень, и на них делить исходное число.
Например: √108=√4*27=2√27=2√3*9=2*3√3=6√3