Дано вибірку об'єму n (n>10). Перші 8 елементів цієї вибірки є такими: 1, 3,3, 5, 5, 5, 7, 7. Решта елементів вибірки дорівнюють 9. Укажіть число, яке може бути середнім арифметичним значенням цієї вибірки.
ВвоыоФункция arcsin(x) обозначает угол, синус которого равен х. Это можно записать математически: sin(arcsin(x))=x. Справедливо и обратное: arcsin(sin(x))=x. Функция arcsin(x) - нечетная, как и обратная ей функция sin(x). Это значит, что arcsin(-x) = - arcsin(x). Поэтому arcsin(-3/4) = -arcsin(3/4). В принципе, arcsin(3/4) - это иррациональное число, выражающее некоторый вполне конкретный угол, заданный именно таким выражением. Но если тебя не устраивает такая запись, можно найти приближенное значение при инженерного калькулятора
Обозначаем прямую х= -2 +t ; y= 4+3t ; z= -3+2t через a . Если берем произвольную точку Т ∉ a ( не на прямой ) и через эту точку проведем прямую k || a , то очевидно любая плоскость α (кроме единственной , которая проходит и через a) будет параллельно a : α || a . [ прямая k _"ось вращения " ] . * * * t =(x+2)/1=(y-4)/3=(z+3)/2 ; L ={1;3;2} направляющий вектор * * * Вектор n{ A ;2 ; B} нормальный вектор плоскости β: Ax+2y +Bz -10 =0. β || a ⇒ n ⊥ L ⇔ n*L =0 (скалярное произведение). A*1+2*3+ B*3 =0 ⇒A +2B = - 6 (соотношение между A и B). любая пара чисел ( -6-2B ; B ) , B ≠ -10. * * * Если B = -10 ⇒a ∈ β.* * *
ответ : пара чисел (- 6 - 2B ; B) , B ≠ -10 или по другому (A ;- (6+A)/2) , A ≠ 14.
Это можно записать математически: sin(arcsin(x))=x.
Справедливо и обратное: arcsin(sin(x))=x.
Функция arcsin(x) - нечетная, как и обратная ей функция sin(x).
Это значит, что arcsin(-x) = - arcsin(x).
Поэтому
arcsin(-3/4) = -arcsin(3/4).
В принципе, arcsin(3/4) - это иррациональное число, выражающее некоторый вполне конкретный угол, заданный именно таким выражением. Но если тебя не устраивает такая запись, можно найти приближенное значение при инженерного калькулятора
Если берем произвольную точку Т ∉ a ( не на прямой ) и через эту точку проведем прямую k || a , то очевидно любая плоскость α (кроме единственной , которая проходит и через a) будет параллельно a : α || a . [ прямая k _"ось вращения " ] .
* * * t =(x+2)/1=(y-4)/3=(z+3)/2 ; L ={1;3;2} направляющий вектор * * *
Вектор n{ A ;2 ; B} нормальный вектор плоскости β: Ax+2y +Bz -10 =0.
β || a ⇒ n ⊥ L ⇔ n*L =0 (скалярное произведение).
A*1+2*3+ B*3 =0 ⇒A +2B = - 6 (соотношение между A и B).
любая пара чисел ( -6-2B ; B ) , B ≠ -10. * * * Если B = -10 ⇒a ∈ β.* * *
ответ : пара чисел (- 6 - 2B ; B) , B ≠ -10 или по другому (A ;- (6+A)/2) , A ≠ 14.