1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
в принципе существует формула сокращённого умножения, но она относится к тем примерам в скобках которых находятся подобные члены, но с противоположными знаками
Объя1) (х+у)(х-у)=х²-ху+ху-у²=х²+(-ху+ху)-у²=х²-у²
2) (Р+Т)(Р-Т)=Р²-РТ+РТ-Т²=Р²+(-РТ+РТ)-Т²=Р²-Т²
3)(m+5)(m-5)=m²-5m+5m-25=m²+(-5m+5m)-25=m²-25
4)(n+1)(n-1)=n²-n+n-1=n²+(-n+n)-1=n²-1
5)(5a-b)(5a+b)=25a²+5ab-5ab-b²=25a²+(5ab-5ab)-b²=25a²-b²
6)(2m+3)(2m-3)=4m²-6m+6m-9=4m²+(-6m+6m)-9=4m²-9
7)(2a-3b)(3b+2a)=6ab+4a²-9b²-6ab=(6ab-6ab)+4a²-9b²=4a²-9b²
8)(7m+3n)(7m-3n)=49m²-21mn+21mn-9n²=49m²+(-21mn+21mn)-9n²=49m²-9n²
9)(7m+3n)(7m-3n)=49m²-21mn+21mn-9n²=49m²+(-21mn+21mn)-9n²=49m²-9n²
объясняю первое остальное по аналогии делается
в принципе существует формула сокращённого умножения, но она относится к тем примерам в скобках которых находятся подобные члены, но с противоположными знаками
(х+у)(х-у)=
раскрываем скобки перемножив все члены
х·х-х·у+х·у-у·у=
х²-ху+ху-у²=
группируем
х²+(-ху+ху)-у²=х²-у²снение:
попрубуй повторить как у меня ок?