Уравнение прямой на плоскости имеет в общем случае (когда прямая не параллельна ни одной из координатных осей) вид ax+by+c=0, где x и y - координаты любой точки, принадлежащей прямой. 1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox. 2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
3 - x - (4 - 2x) = 3 - x - 4 + 2x = x - 1 = -5
x = -4 < 2 - подходит
При 2 <= x < 3 будет |2x-4| = 2x - 4; |x-3| = 3 - x
3 - x - (2x - 4) = 3 - x - 2x + 4 = 7 - 3x = -5
3x = 12; x = 4 > 3 - не подходит.
При x >= 3 будет |2x-4| = 2x - 4; |x-3| = x - 3
x - 3 - (2x - 4) = x - 3 - 2x + 4 = 1 - x = -5
x = 6 > 3 - подходит.
ответ: x1 = -4; x2 = 6
2) Если x < -1, то |2x+2| = -2x - 2; |x-2| = 2 - x
2 - x - (-2x - 2) = 2 - x + 2x + 2 = x + 4 = 1
x = -3 < -1 - подходит
Если -1 <= x < 2, то |2x+2| = 2x + 2; |x-2| = 2 - x
2 - x - (2x + 2) = 2 - x - 2x - 2 = -3x = 1
x = -1/3 ∈ (-1; 2) - подходит
Если x >= 2, то |2x+2| = 2x + 2; |x-2| = x - 2
x - 2 - (2x + 2) = x - 2 - 2x - 2 = -x - 4 = 1
x = -5 < 2 - не подходит
ответ: x1 = -3; x2 = -1/3
1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox.
2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1