Задать вопрос
Войти
АнонимГеометрия13 мая 17:10
треугольник MNP равнобедренный. один из углов равен 112 градусам. найти углы
ответ или решение1
Боброва Кира
Рассмотрим два возможный случая.
1 случай.
Данный угол величиной 112° является углом при вершине данного равнобедренного треугольника.
Тогда два других угла при основании будут равны между собой.
Обозначим через x величину этих углов.
Так как при сложении величин всех трех углов всякого треугольника в результате получается 180°, можем составить следующее уравнение:
х + х + 112 = 180,
решая которое, получаем:
2х + 112 = 180;
(2х + 112) / 2 = 180 / 2;
х + 56 = 90;
х = 90 - 56 = 34°.
2 случай.
Данный угол величиной 112° является углом при основании данного равнобедренного треугольника.
Тогда другой угол при основании также должен составлять 112°.
Так как суммы этих двух углов, равная 112 + 112 = 224° больше 180°, то такого треугольника не существует.
ответ: 112°, 54°, 54°.
Объяснение:
а) 25²⁶-25²⁴=25²⁴(25²-25⁰)=25²⁴(625-1)=25²⁴·624
Признаки делимости на 12:
1) 6+2+4=12 делится на 3, следовательно, 624 также делится на 3;
2) 2+4÷2=4 - чётное число. Значит, 624 делится на 4.
Отсюда следует, что 624 делится на 12.
Если один из множителей делится нацело на число а, то произведение делится нацело на число a.
Следовательно, произведение (25²⁴·624) делится на 12.
б) 16⁴+8⁵-4⁷=(2⁴)⁴+(2³)⁵-(2²)⁷=2¹⁶+2¹⁵-2¹⁴=2¹⁴(2²+2¹-2⁰)=2¹⁴(4+2-1)=2¹⁴·5=2¹³·2·5=2¹³·10
Следовательно, произведение (2¹³·10) делится на 10.
Задать вопрос
Войти
АнонимГеометрия13 мая 17:10
треугольник MNP равнобедренный. один из углов равен 112 градусам. найти углы
ответ или решение1
Боброва Кира
Рассмотрим два возможный случая.
1 случай.
Данный угол величиной 112° является углом при вершине данного равнобедренного треугольника.
Тогда два других угла при основании будут равны между собой.
Обозначим через x величину этих углов.
Так как при сложении величин всех трех углов всякого треугольника в результате получается 180°, можем составить следующее уравнение:
х + х + 112 = 180,
решая которое, получаем:
2х + 112 = 180;
(2х + 112) / 2 = 180 / 2;
х + 56 = 90;
х = 90 - 56 = 34°.
2 случай.
Данный угол величиной 112° является углом при основании данного равнобедренного треугольника.
Тогда другой угол при основании также должен составлять 112°.
Так как суммы этих двух углов, равная 112 + 112 = 224° больше 180°, то такого треугольника не существует.
ответ: 112°, 54°, 54°.
Объяснение:
а) 25²⁶-25²⁴=25²⁴(25²-25⁰)=25²⁴(625-1)=25²⁴·624
Признаки делимости на 12:
1) 6+2+4=12 делится на 3, следовательно, 624 также делится на 3;
2) 2+4÷2=4 - чётное число. Значит, 624 делится на 4.
Отсюда следует, что 624 делится на 12.
Если один из множителей делится нацело на число а, то произведение делится нацело на число a.
Следовательно, произведение (25²⁴·624) делится на 12.
б) 16⁴+8⁵-4⁷=(2⁴)⁴+(2³)⁵-(2²)⁷=2¹⁶+2¹⁵-2¹⁴=2¹⁴(2²+2¹-2⁰)=2¹⁴(4+2-1)=2¹⁴·5=2¹³·2·5=2¹³·10
Если один из множителей делится нацело на число а, то произведение делится нацело на число a.
Следовательно, произведение (2¹³·10) делится на 10.