Дана функция у=√х: а) График которого проходит через точку с координатами А(а;2√7). Найдите значение а.
b) Если х ϵ [0; 16], то какие значения будет принимать данная функция?
с) y ϵ [5; 13]. Найдите значение аргумента.
d) Найдите при каких х выполняется неравенство у ≤ 3.
x+4>0 x>-4
если основание логарифма больше 1
3-х>1 x<2
㏒₃₋ₓ(х+4)/(х-3)² ≥-2
(х+4) /(х-3)² ≥ (3-x)⁻²
(х+4) /(х-3)² ≥ 1/(3-x)² заметим что (х-3)² = (3-x)² , значит
х+4 ≥ 1
х ≥ -3 с учетом ОДЗ х∈ [-3;2)
если основание логарифма больше 0 ,но меньше 1
1>3-x>0 3>x>2
x+4≤1
x≤-3 с учетом 3>x>2 решений нет
ответ х∈ [-3;2)
3ч.
Объяснение:
Пусть со скоростью 15 км/ч велосипедист ехал х часов, тогда с этой скоростью он проехал 15х км.
В пути он был 5 часов, тогда со скоростью 10 км/ч он ехал (5 - х) часов, проехал с этой скоростью 10•(5 - х) км.
Зная, что весь путь велосипедиста 65 км, составим и решим уравнение:
15х + 10•(5 - х) = 65
15х + 50 - 10х = 65
5х = 65 - 50
5х = 15
х = 15:5
х = 3
3 часа ехал велосипедист со скоростью 15 км/ч.
ответ: 3 ч.
Проверим полученный результат:
3ч со скоростью 15 км/ч
3•15 = 45 (км)
2ч со скоростью 10 км/ч
2•10 = 20 (км)
45 + 20 = 65 (км) - верно