Для решения данного уравнения используем сравнения множеств значений выражений стоящих в левой и правой части уравнений. Преобразуем левую часть уравнения к виду √х +4/√х, разделив каждое слагаемой числителя на знаменатель. √х всегда положителен(в этом уравнении он находился в знаменателе , значит равным 0 не может быть). Тогда это выражение принимает наименьшее значение равное 4 при х = 4 (√4 +4/√4 =2 +2 =4) Все остальные его значения больше 4. Выражение стоящее в правой части уравнения -х^2 +8x-12 является квадратичной функцией и принимает наибольшее значение равное 4 в точке х = 4 .(вершине параболы, ветви параболы направлены вниз, т.к. первый коэффициент равен -1) Следовательно равны они могут быть только при одном значении переменной х = 4 ,
Верно. Покажем, что любое натуральное число N можно представить в указанном виде (а значит, и отношение натуральных чисел будет представимо в таком виде). Если N = 1, можно написать, например, N = 2! / 2! По основной теореме арифметики любое натуральное число, большее 1, однозначно (с точностью до порядка сомножителей) представимо в виде произведения простых множителей:
(alpha - номер простого числа; все простые числа расположены в порядке возрастания)
Докажем требуемое утверждение индукцией по alpha_k. База: Для alpha_k = 1 утверждение очевидно: первое простое число совпадает со своим факториалом: 2 = 2! Переход. Пусть для всех alpha_k < m утверждение задачи выполнено. Пусть N = Q * p^l, причем номер p равен m и Q не делится на p. 1) Q по предположению представимо в нужном виде. 2) Заметим, что p = p! / (p-1)!. (p-1)! не содержит простых чисел с номерами, не меньших m, так что по предположению индукции представимо в виде дроби нужного вида. Тогда и p!/(p-1)! представимо в нужном виде. 3) Остается перемножить дробь для Q и l дробей для p. Переход доказан.
Покажем, что любое натуральное число N можно представить в указанном виде (а значит, и отношение натуральных чисел будет представимо в таком виде).
Если N = 1, можно написать, например, N = 2! / 2!
По основной теореме арифметики любое натуральное число, большее 1, однозначно (с точностью до порядка сомножителей) представимо в виде произведения простых множителей:
(alpha - номер простого числа; все простые числа расположены в порядке возрастания)
Докажем требуемое утверждение индукцией по alpha_k.
База: Для alpha_k = 1 утверждение очевидно: первое простое число совпадает со своим факториалом: 2 = 2!
Переход. Пусть для всех alpha_k < m утверждение задачи выполнено. Пусть N = Q * p^l, причем номер p равен m и Q не делится на p.
1) Q по предположению представимо в нужном виде.
2) Заметим, что p = p! / (p-1)!. (p-1)! не содержит простых чисел с номерами, не меньших m, так что по предположению индукции представимо в виде дроби нужного вида. Тогда и p!/(p-1)! представимо в нужном виде.
3) Остается перемножить дробь для Q и l дробей для p.
Переход доказан.