составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.
Объяснение:
Квадратная таблица
A=(a11a21a12a22)
составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
detA=∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣=
a11a22a33+a21a32a13+a12a23a31−a13a22a31−a12a21a33−a23a32a11.
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.
Задание 1.
1. 5x⁴x²x=5x⁷, коэффициент 5, степень одночлена 7
2. 4b*0,25a*3m=3abm, коэффициент 3, степень одночлена 3
3. 6x*(-4yz)=-24xyz, коэффициент -24, степень одночлена 3
4. -2,4n²*5n³*x= -12n⁵x, коэффициент -12, степень одночлена 6
5. -15a²*0,2a⁵b³*(-3c)=9a⁷b³c, коэффициент 9, степень одночлена 11
6. y²*(-x³)*y¹¹=-x³y¹³, коэффициент -1, степень одночлена 16
Задание 2.
1. 3n³, если = -2
3*-2³= 3*-8= -24.
2. -4,5xy², если x=1/9, y= -4
-4,5*1/9*-4²= -4,5*1/9*16= -8
3. 7/12ab³, если a= -1/7, b= -2
7/12*-1/7*-2³= 7/12*-1/7*-8= 2/3
4. 0,4m²nk, если m=0,5, n=6, k= -10
0,4*0,5²*6*-10= 0,4*0,25*6*-10= -6
Объяснение: