A(0 ;-4) ,B(3;0) ,C(0;6).Пусть AD ,биссектриса угла A.
Можно решать разными
k = |CD|/|BD| =|AC|/|AB| =10/2 =2 . x(D) =(x(C) +k*x(B))/(1+k) =(0+2*3)/(1+2) =2. y(D)=(y(C) +k*y(B))/(1+k) =(6+2*0)/(1+2) =2. D(2;2). Уравнения прямой a , содержащей биссектрису AD будет : y -y(A) =(y(D) -y(A))/ (x(D) -x(A)) *(x- x(A)) ; y+ 4 = 3x ⇔3x -y -4 =0 ⇔ (3x -y -4)/√(3²+1²) =0 . (3x -y -4)/√10 =0 ; расстояние от точки (вершины) С(0 ;6) до прямой a d= |3*0-6-4) /√10 =√10 . * * * * * * * можно решать очень элементарно определить высоту Hc треугольника ACD. |AC| =10 ; |AB| =5 ;|BC| =3√5 * * * * * * * Из вершины C проводить прямую ( составить уравнение) b ⊥ AD и найти точку пересечения с прямой a y - y(c) = -(1/Ka)(x - x(C)) ⇔y -6 = -(1/3)x. { 3x -y -4 =0 ; y -6 = -(1/3)x.
Можно решать разными
k = |CD|/|BD| =|AC|/|AB| =10/2 =2 .
x(D) =(x(C) +k*x(B))/(1+k) =(0+2*3)/(1+2) =2.
y(D)=(y(C) +k*y(B))/(1+k) =(6+2*0)/(1+2) =2.
D(2;2).
Уравнения прямой a , содержащей биссектрису AD будет :
y -y(A) =(y(D) -y(A))/ (x(D) -x(A)) *(x- x(A)) ;
y+ 4 = 3x ⇔3x -y -4 =0 ⇔ (3x -y -4)/√(3²+1²) =0 .
(3x -y -4)/√10 =0 ;
расстояние от точки (вершины) С(0 ;6) до прямой a
d= |3*0-6-4) /√10 =√10 .
* * * * * * * можно решать очень элементарно
определить высоту Hc треугольника ACD.
|AC| =10 ; |AB| =5 ;|BC| =3√5
* * * * * * *
Из вершины C проводить прямую ( составить уравнение) b ⊥ AD и найти точку пересечения с прямой a
y - y(c) = -(1/Ka)(x - x(C)) ⇔y -6 = -(1/3)x.
{ 3x -y -4 =0 ; y -6 = -(1/3)x.