Дан прямоугольник ABCD. Постройте фигуру, на которую отображается этот прямоугольник: а) при центральной симметрии с центром С; б) при осевой симметрии с осью BС.
1) угловой коэффициент k=-0,7 2) х=2у+2 2у=х-2 у=х/2-1 Угловой коэфф. к=1/2 3) -5х+3у+16=0 3у=5х-16 у=5х/3-16/3 Угловой коэфф. k=5/3 № 3. 1) (х-3)²+(у-1)²=9 (х-3)²+(у-1)²=3² Графиком будет окружность с радиусом 3 с центром в точке с координатами (3; 1) 2) у=(х-2)²-1 у=х²-4х+4-1 у=х²-4х+3 График функции - парабола, ветви направлены вверх ( а>0) Нули функции х1=1 и х2=3. (Точки пересечения с осью ОХ) При х =0, у=3 - точка пересечения с осью ОУ 3) у=х²-2 График - парабола ветвями вверх. При х=0, у=-2.
5y^2 + 13y - 6 = 6y^2 + 7y + 2
5y^2 - 6y^2 + 13y - 7y - 6 - 2 = 0
- y^2 + 6y - 8 = 0
y^2 - 6y + 8 = 0
D = b^2 - 4ac= 36 - 32 = 4 = 2^2
y1 = ( 6 + 2)/ 2 = 4
y2 = ( 6 - 2) / 2 = 2
Проверяем подходят ли оба корня:
y =4 y = 2
(20 - 2)/(8 +1 )=( 12 + 2)/ 7 (10 - 2)/(4 + 1) = (6 + 2)/5
18/9 = 14/7 8/ 5 = 8/5 - верно.
2 = 2 - верно.
Находим среднее арифметическое корней:
(4 + 2) / 2 = 3
2) х=2у+2
2у=х-2
у=х/2-1 Угловой коэфф. к=1/2
3) -5х+3у+16=0
3у=5х-16
у=5х/3-16/3 Угловой коэфф. k=5/3
№ 3.
1) (х-3)²+(у-1)²=9
(х-3)²+(у-1)²=3² Графиком будет окружность с радиусом 3 с центром в точке с координатами (3; 1)
2) у=(х-2)²-1 у=х²-4х+4-1 у=х²-4х+3
График функции - парабола, ветви направлены вверх ( а>0) Нули функции х1=1 и х2=3. (Точки пересечения с осью ОХ)
При х =0, у=3 - точка пересечения с осью ОУ
3) у=х²-2
График - парабола ветвями вверх. При х=0, у=-2.