Дам 40б а) Велосипедист решил совершить путешествие, потратив на дорогу 11 часов. Длина всего маршрута равна 180 км. На второй половине пути скорость велосипедиста была на 3 км/ч меньше, чем его скорость на первой половине пути. Определите, с какой скоростью двигался велосипедист на первой половине пути
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
В решении.
Объяснение:
4. Упростить:
(а+9)/(3а+9) - (а+3)/(3а-9) + 13/(а²-9);
1) Определить общий знаменатель. Для этого преобразовать все знаменатели всех дробей:
1 дробь: (3а+9) = 3(а+3);
2 дробь: (3а-9) = 3(а-3);
3 дробь: (а²-9) = (а-3)(а+3).
Очевидно, что общий знаменатель 3(а-3)(а+3) - делится на все знаменатели.
2) Надписываем над числителями дополнительные множители:
[(а-3)(а+9) - (а+3)(а+3) + 3*13] / 3(а-3)(а+3) =
=[а²+9а-3а-27-(а²+6а+9)+39] / 3(а-3)(а+3) =
=(а²+9а-3а-27-а²-6а-9+39) / 3(а-3)(а+3) =
= 3/3(а-3)(а+3) = 1/(а²-9).
4. Упростить:
(4b³+8b)/(b³-8) - 2b²/(b²+2b+4);
1) Определить общий знаменатель. Для этого преобразовать все знаменатели всех дробей:
1 дробь: (b³-8) = (разность кубов b³-2³) = (b-2)(b²+2b+4);
2 дробь: (b²+2b+4), ничего преобразовать нельзя.
Очевидно, что общий знаменатель (b-2)(b²+2b+4) - делится на все знаменатели.
2) Надписываем над числителями дополнительные множители:
[(4b³+8b) - (b-2)*2b²] / [(b-2)(b²+2b+4)]=
=(4b³+8b - 2b³+4b²) / [(b-2)(b²+2b+4)]=
=(2b³+4b²+8b) / [(b-2)(b²+2b+4)]=
=2b(b²+2b+4) / [(b-2)(b²+2b+4)]=
сократить (разделить) (b²+2b+4) и (b²+2b+4) на (b²+2b+4):
=2b/(b-2).
5. Найти значение выражения, если (a-3b)/b = 4
Выразить а через b:
(a-3b)/b = 4
а-3b=4b
a=7b, подставить значение а в выражения и найти их значения:
1) a/b = 7b/b = 7;
2) (4a+5b)/a=
=(4*7b+5b)/7b=
=(28b+5b)/7b=
=33b/7b= 33/7 = 4 и 5/7.