Будем считать, что L≠B. Иначе утверждение не верно (или тогда в условии должно быть что-то сказано про кратность корня. Но в этом случае не будет задачи, т.к. если кратность, допустим корня В больше или равна 2, то по определению кратности корня это и значит делимость многочлена на (x-B)²).
Итак, если L - корень многочлена P(x), то по т. Безу P(x)=(x-L)P₁(x), где P₁(x) - некоторый многочлен. Т.к. В - тоже корень многочлена P(x), то P(B)=(B-L)P₁(B)=0, откуда P₁(B)=0, т.е. B - корень многочлена P₁(x). Значит, опять по т. Безу P₁(х)=(х-В)P₂(x). Таким образом, P(x)=(x-L)P₁(x)=(x-L)(х-В)P₂(x), что и требовалось.
Тут рулят , кажется, если не забыл, формулы привидения. sin315°= sin(360°-45°)= -sin(45°) // тут стоит минус, так как наша функция находится в 4-ой четверти, синус это же игрек на системе координат, а игрек в 4-ой четверти отрицательный. 2 | 1
3 | 4 схематичная система координат )) тут я показал где находятся четверти.
cos315°= cos(360°-45°)= +cos45° // тут стоит плюс, так как косинус это икс и он в 4-ой четверти положительный.
tg(315°) = tg(360°-45°)= -tg(45°) // тут стоит минус, так как тангенс в 4-ой четверти отрицательный, тангенс это sin÷cos или y÷x, в нашем случаи будет так: tg(360°-45°)= -sin45°÷cos45°= -tg45°
ctg(315°) = ctg(360°-45°)= -ctg(45°) // тут все тоже самое, что и в tg , но только катангес это cos÷sin или x÷y => ctg(360°-45°)= cos45°÷(-sin45°)= -ctg45°
Итак, если L - корень многочлена P(x), то по т. Безу P(x)=(x-L)P₁(x), где P₁(x) - некоторый многочлен. Т.к. В - тоже корень многочлена P(x), то P(B)=(B-L)P₁(B)=0, откуда P₁(B)=0, т.е. B - корень многочлена P₁(x). Значит, опять по т. Безу P₁(х)=(х-В)P₂(x). Таким образом, P(x)=(x-L)P₁(x)=(x-L)(х-В)P₂(x), что и требовалось.
sin315°= sin(360°-45°)= -sin(45°) // тут стоит минус, так как наша функция находится в 4-ой четверти, синус это же игрек на системе координат, а игрек в 4-ой четверти отрицательный.
2 | 1
3 | 4
схематичная система координат )) тут я показал где находятся четверти.
cos315°= cos(360°-45°)= +cos45° // тут стоит плюс, так как косинус это икс и он в 4-ой четверти положительный.
tg(315°) = tg(360°-45°)= -tg(45°) // тут стоит минус, так как тангенс в 4-ой четверти отрицательный, тангенс это sin÷cos или y÷x, в нашем случаи будет так: tg(360°-45°)= -sin45°÷cos45°= -tg45°
ctg(315°) = ctg(360°-45°)= -ctg(45°) // тут все тоже самое, что и в tg , но только катангес это cos÷sin или x÷y => ctg(360°-45°)= cos45°÷(-sin45°)=
-ctg45°