Объем работы (заказ) = 1 (целая) 1) 3 ч. 36 мин. = 3 ³⁶/₆₀ ч. = 3,6 часа 1 : 3,6 = 1 * ¹⁰/₃₆ = 1 * ⁵/₁₂ = ⁵/₁₂ (частей) объема работы в час выполняют два рабочих при совместной работе 2) 1 : 6 = ¹/₆ (часть) объема работы в час выполняет I рабочий самостоятельно 3) ⁵/₁₂ - ¹/₆ = ⁵/₁₂ - ²/₁₂ = ³/₁₂ = ¹/₄ (часть) объема работы в час выполняет II рабочий самостоятельно 4) 1 : ¹/₄ = 1 * ⁴/₁ = 4 (часа)
ответ : 4 часа необходимо второму рабочему для выполнения заказа, если он будет работать один.
1) 3 ч. 36 мин. = 3 ³⁶/₆₀ ч. = 3,6 часа
1 : 3,6 = 1 * ¹⁰/₃₆ = 1 * ⁵/₁₂ = ⁵/₁₂ (частей) объема работы в час выполняют два рабочих при совместной работе
2) 1 : 6 = ¹/₆ (часть) объема работы в час выполняет
I рабочий самостоятельно
3) ⁵/₁₂ - ¹/₆ = ⁵/₁₂ - ²/₁₂ = ³/₁₂ = ¹/₄ (часть) объема работы в час выполняет II рабочий самостоятельно
4) 1 : ¹/₄ = 1 * ⁴/₁ = 4 (часа)
ответ : 4 часа необходимо второму рабочему для выполнения заказа, если он будет работать один.
3/(2^(2 - x²) -1)² - 4/(2^(2- x²) -1) + 1 ≥ 0 ;
замена : t = 2^(2-x²) -1
3 / t² - 4 / t +1 ≥ 0 ;
(t² - 4t +3) / t² ≥ 0
для квадратного трехчлена t² - 4t +3 t₁=1 корень: 1² - 4*1+3 = 1- 4+3 =0.
t₂ =3/t₁=3/1=1 (или t₂ =4 -1=3)
* * * наконец можно и решить уравнение t² - 4t +3=0 * * *
(t² - 4t +3) / t² ≥ 0 ⇔ (t -1)(t - 3) / t² ≥ 0 .
+ + - +
Объяснение:a)
{ 2^(2-x²) -1 ≤ 1 ; 2^(2-x²) -1 ≠ 0 .⇔ { 2^(2-x²) ≤ 2 ; 2^(2-x²) ≠ 1 . ⇔
{ 2^(2-x²) ≤ 2¹ ; 2^(2-x²) ≠ 2⁰.⇔ {2-x² ≤ 1 ; 2 - x² ≠ 0.⇔{ x² -1 ≥ 0 ; x² ≠ 2⇔
{ (x+1)(x-1) ≥ 0 ; x ≠ ±√2 . ⇒ x∈ ( -∞ ; -√2 ) ∪ (-√2 ; -1] ∪ [1 ; √2) U (√2 ; ∞) .
b)
2^(2-x²) -1 ≥ 3 ⇔ 2^(2-x²) ≥ 4 ⇔2^(2-x²) ≥ 2² ⇔2- x² ≥ 2 ⇔ x² ≤ 0 ⇒ x=0.
ответ: x∈ ( -∞ ; -√2 ) ∪ (-√2 ; -1] ∪ { 0} ∪ [1 ; √2) U (√2 ; ∞) .