Решение Не выполняя построения, установите взаимное расположение графиков лин.функций: Будем проверять равенство коэффициентов при х и свободные члены y = k₁ + b₁ y = k₂x + b₂ сократим дроби 1) y=12/16x+8/10 = 3/4x + 4/5 y=15/20x+4/5 = 3/4x + 4/5 k₁ = k₂ и b₁ = b₂ Таким образом: y=12/16x+8/10 и y=15/20x+4/5 уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10 k₁ = k₂ = 8/9 значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
√675=15√3 15√3=√225*3 Мы просто раскладываем число 675 на два множителя. Из одного из них должен изыматься корень, из другого нет. Получаем √225*3. Изымаем корень из 225 и получаем 15. Поэтому √675=15√3 Тоже самое с √108. Раскладываем на √36*3. Изымаем корень из 36, получаем 6. 6√3. По сути, вы можете брать любые другие числа (не именно 225 и 36). Если трудно разложить, можно брать любые другие числа (4, 9), из которых изымается корень, и на них делить исходное число. Например: √108=√4*27=2√27=2√3*9=2*3√3=6√3
Не выполняя построения, установите взаимное расположение графиков лин.функций:
Будем проверять равенство коэффициентов при х и свободные члены
y = k₁ + b₁ y = k₂x + b₂
сократим дроби
1) y=12/16x+8/10 = 3/4x + 4/5
y=15/20x+4/5 = 3/4x + 4/5
k₁ = k₂ и b₁ = b₂
Таким образом:
y=12/16x+8/10 и y=15/20x+4/5
уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10
k₁ = k₂ = 8/9
значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются
15√3=√225*3
Мы просто раскладываем число 675 на два множителя. Из одного из них должен изыматься корень, из другого нет. Получаем √225*3. Изымаем корень из 225 и получаем 15.
Поэтому √675=15√3
Тоже самое с √108. Раскладываем на √36*3. Изымаем корень из 36, получаем 6. 6√3.
По сути, вы можете брать любые другие числа (не именно 225 и 36). Если трудно разложить, можно брать любые другие числа (4, 9), из которых изымается корень, и на них делить исходное число.
Например: √108=√4*27=2√27=2√3*9=2*3√3=6√3