В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Danya135evlanov
Danya135evlanov
22.06.2020 14:07 •  Алгебра

Чому дорівнює дискримінант квадратного рівняння
x2+3x−130=0

Показать ответ
Ответ:
124541Artem11111
124541Artem11111
21.01.2021 09:21

ответ: Подпишитесь на мой канал в ютубе

Объяснение:

По определению, функция является четной, если ее область определения симметрична относительно начала координат, и у(- х) = у(х). Если же у(- х) = - у(х), то такая функция будет нечетной.

Найдем область определения функции y = tg 3x. Так как tg 3x = sin 3x / cos 3x, то cos 3x ≠ 0, следовательно,

3х ≠ П/2 + Пn, n – из множества Z.

x ≠ П/6 + Пn/3, n – из множества Z.

Таким образом, область определения функции D(y): все числа, кроме x ≠ П/6 + Пn/3, n – из множества Z – симметрична относительно 0.

у(- х) = tg (3 * (- x)) = tg (- 3x) = - tg 3x = - (y(x)), следовательно, данная функция является нечетной.

0,0(0 оценок)
Ответ:
Bab4enock
Bab4enock
13.06.2021 18:09

Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.

Знаходження похідної:

f'(x) = d/dx (2x - x²)= 2 - 2x

Знаходимо точки екстремуму:

f'(x) = 02 - 2x = 02x = 2x = 1

Таким чином, точка екстремуму x = 1.

Досліджуємо знак похідної та визначаємо проміжки монотонності:

3.1. Розглянемо інтервал (-∞, 1):

Для x < 1:

f'(x) = 2 - 2x < 0 (знак "менше нуля")

Таким чином, на цьому інтервалі функція f(x) спадає.

3.2. Розглянемо інтервал (1, +∞):

Для x > 1:

f'(x) = 2 - 2x > 0 (знак "більше нуля")

Таким чином, на цьому інтервалі функція f(x) зростає.

Знаходимо значення функції f(x) у точці екстремуму:

f(1) = 2(1) - (1)²= 2 - 1= 1

Таким чином, екстремум функції f(x) в точці (1, 1).

Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:

Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота