Получившееся уравнение не имеет решений. 2) При а=-7 получим:
Получившееся уравнение имеет бесконечное множество корней. 3) Если а≠7 и а≠-7, то разделим левую и правую часть уравнения на (а+7)(а-7)
Именно в этом случае уравнение будет иметь один корень. ответ:
Прежде чем рассматривать сумму корней докажем, что уравнение всегда будет иметь корни. Находим дискриминант:
Сумма неотрицательного числа (квадрат) и положительного числа есть число положительное, значит дискриминант положительный и уравнение имеет два корня при любом значении а. Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком:
Выражение представляет собой квадратичную функцию, графиком которой является парабола ветвями вверх. Наименьшее значение такой функции достигается в вершине, которую вычислим по формуле:
Иначе можно было найти ответ приравняв к нулю первую производную функции:
Рассмотрим три случая:
1) При а=7 получим:
Получившееся уравнение не имеет решений.
2) При а=-7 получим:
Получившееся уравнение имеет бесконечное множество корней.
3) Если а≠7 и а≠-7, то разделим левую и правую часть уравнения на (а+7)(а-7)
Именно в этом случае уравнение будет иметь один корень.
ответ:
Прежде чем рассматривать сумму корней докажем, что уравнение всегда будет иметь корни. Находим дискриминант:
Сумма неотрицательного числа (квадрат) и положительного числа есть число положительное, значит дискриминант положительный и уравнение имеет два корня при любом значении а.
Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком:
Выражение представляет собой квадратичную функцию, графиком которой является парабола ветвями вверх. Наименьшее значение такой функции достигается в вершине, которую вычислим по формуле:
Иначе можно было найти ответ приравняв к нулю первую производную функции:
ответ: 8,5
Чтобы упростить выражение (3х + 2)(2х - 1) - (5х - 2)(х - 4) откроем скобки и приведем подобные слагаемые.
Чтобы умножить скобку на скобку умножаем каждое слагаемое из одной скобки на каждое слагаемое из второй.
(3х + 2)(2х - 1) - (5х - 2)(х - 4) = 3x * 2x - 3x * 1 + 2 * 2x - 2 * 1 - (5x * x - 5x * 4 - 2 * x - 2 * (- 4)) = 6x^2 - 3x + 4x - 2 - (5x^2 - 20x - 2x + 8);
Открываем скобки используя правило открытия скобок перед которыми стоит знак минус.
6x^2 - 3x + 4x - 2 - (5x^2 - 20x - 2x + 8) = 6x^2 - 3x + 4x - 2 - 5x^2 + 20x + 2x - 8 = 6x^2 - 5x^2 - 3x + 4x + 20x + 2x - 2 - 8 = x^2 + 23x - 10.