sin(x)+cos(x) = 0 или 4sin²(x)-3 = 0
sin(x) = -cos(x) |:cos(x) 4sin²(x) = 3
tg(x) = -1 sin²(x) = 3/4
x₁ = 3π/4 + πn, n∈Z sin(x) = ±√3/2
sin(x) = -√3/2 или sin(x) = √3/2
x₂ = arcsin(-√3/2) + 2πn x₄ = arcsin(√3/2) + 2πn
x₃ = π-arcsin(-√3/2) + 2πn x₅ = π-arcsin(√3/2) + 2πn
x₂ = -π/3 + 2πn x₄ = π/3 + 2πn
x₃ = π+π/3 + 2πn x₅ = π-π/3 + 2πn
x₂ = 5π/3 + 2πn, n∈Z x₄ = π/3 + 2πn, n∈Z
x₃ = 4π/3 + 2πn, n∈Z x₅ = 2π/3 + 2πn, n∈Z
Следовательно:
x₄ = π/3 + 2πn, n∈Z,
x₅ = 2π/3 + 2πn, n∈Z
ответ: x₁ = 3π/4 + πn, n∈Z;
x₄ = π/3 + 2πn, n∈Z;
sin(x)+cos(x) = 0 или 4sin²(x)-3 = 0
sin(x) = -cos(x) |:cos(x) 4sin²(x) = 3
tg(x) = -1 sin²(x) = 3/4
x₁ = 3π/4 + πn, n∈Z sin(x) = ±√3/2
sin(x) = -√3/2 или sin(x) = √3/2
x₂ = arcsin(-√3/2) + 2πn x₄ = arcsin(√3/2) + 2πn
x₃ = π-arcsin(-√3/2) + 2πn x₅ = π-arcsin(√3/2) + 2πn
x₂ = -π/3 + 2πn x₄ = π/3 + 2πn
x₃ = π+π/3 + 2πn x₅ = π-π/3 + 2πn
x₂ = 5π/3 + 2πn, n∈Z x₄ = π/3 + 2πn, n∈Z
x₃ = 4π/3 + 2πn, n∈Z x₅ = 2π/3 + 2πn, n∈Z
Следовательно:
x₄ = π/3 + 2πn, n∈Z,
x₅ = 2π/3 + 2πn, n∈Z
ответ: x₁ = 3π/4 + πn, n∈Z;
x₄ = π/3 + 2πn, n∈Z;
x₅ = 2π/3 + 2πn, n∈Z
(Х + 1) (x - 1) / (Х - 2)(x - 1) = (x² - 1) / (Х - 2)(x - 1) = (x² - 1) / (x² - 3x + 2)
2) (Х - 3) (x - 3)/ (Х + 3)(x - 3) = (x - 3)² / (x² - 9)
Х*(x + 3) / (Х - 3)(x + 3) = x*(x + 3) / (x² - 9)
3) (3 + Х)(x - 3) / (Х - 5)(x - 3) = (x² - 9) / (Х - 5)(x - 3) = (x² - 9) / (x² - 8x + 15)
Х*(x - 5) / (Х - 3)(x - 5) = Х*(x - 5) / (x² - 8x + 15)
4) (Х + 1)(x + 2) /x*(x² - 4) = (x² + 3x + 2) /x*(x² - 4)
x (4 + Х) / x( x² - 4)