Через точку p лежащую вне окружности проведены две прямые одна из которых пересекает окружность в точках a и b а другая в точках c и d. точка a лежит между точками p и b точка c между точками p и d . известно что pb=pd. докажите что ab =cd?
Найдите наименьшее значение области функции: y=13-10x+x^2 Решение: Минимум параболы вида y = ах² + bx +с при a>0 находится в вершине параболы в точке x =-b/(2a) В нашем случае у =х²-10х+13 а=1 b=-10 x=10/2=5 y=5²-10*5+13= 25-50+13 =-25+13=-12 Получили минимум в точке (5;-12) Можно также применить исследование функции. Производная функции у' =(x²-10x+13)' = (x²)'-(10x)'+(13)' =2x-10 Находим критические точки у' =0 или 2х-10=0 х=5 На числовой прямой отобразим полученную точку, а также полученные по методу подстановки знаки производной. Например при х=0 у'=-10<0 - 0 + !> 5 х Функция убывает на промежутке (-оо;5) Функция возрастает на промежутке( 5;оо) В точке х=5 функция имеет локальный минимум. у(5)=-12 ответ: минимум в точке (5;-12)
Минимум параболы вида y = ах² + bx +с при a>0 находится в вершине параболы в точке x =-b/(2a)
В нашем случае у =х²-10х+13
а=1
b=-10
x=10/2=5
y=5²-10*5+13= 25-50+13 =-25+13=-12
Получили минимум в точке (5;-12)
Можно также применить исследование функции.
Производная функции
у' =(x²-10x+13)' = (x²)'-(10x)'+(13)' =2x-10
Находим критические точки
у' =0 или 2х-10=0
х=5
На числовой прямой отобразим полученную точку, а также полученные по методу подстановки знаки производной. Например при х=0 у'=-10<0
- 0 +
!>
5 х
Функция убывает на промежутке (-оо;5)
Функция возрастает на промежутке( 5;оо)
В точке х=5 функция имеет локальный минимум.
у(5)=-12
ответ: минимум в точке (5;-12)
Выражения 6⋅a⋅y; 0,25x3; abbc; 8,43; 16c⋅(−12)d; 38x2y тоже являются одночленами.
При записи одночленов между числами и переменными знак умножения не ставится
(6⋅a⋅y = 6ay).
Одночленом также считается:
- одна переменная, например, x, т. к. x=1⋅x;
- число, например, 3, так как 3=3⋅x0 (одно число также является одночленом).
Некоторые одночлены можно упростить.
Упростим одночлен 6xy2⋅(−2)x3y, используя свойство умножения степеней:
am⋅an=am+n —
6xy2⋅(−2)x3y = 6⋅(−2)xx3y2y=−12x4y3
(числа перемножаются, а показатели у одинаковых букв складываются)...
Объяснение:
Запишем одночлен 10⋅12abbb в стандартном виде: 10⋅12abbb=5⋅2⋅12ab3=5ab3.