При вычислении воспользуйтесь формулами m=-b/2a и n=f(-b/2a),где m и n координаты вершины параболы f(x) =ax^2+bx+c
Решение: а) f(x)=x²-6x+4; В приведенном уравнение b =-6, a=1 m=x=-b/2a =-(-6)/(2*1)=6/2=3 n=y(3)=3²-6*3+4=9-18+4=-5 Вершина параболы y= x² - 6x + 4 находится в точке с координатами m=х=3, n=у(3)=-5
б) f(x)=-x²-4x+1 В приведенном уравнение b =-4, a=-1 m=x=-b/2a =-(-4)/(2*(-1))=-4/2=-2 n=y(-2)=-(-2)²-4*(-2)+1=-4+8+1= 5 Вершина параболы y= -x² - 4x + 1 находится в точке с координатами m=х=-2, n=у(-2)= 5
в)f(x)=3x²-12x+2
В приведенном уравнение b =-12, a=3 m=x=-b/2a =-(-12)/(2*3)=12/6= 2 n=y(2)=3*2²-12*2+2=12-24+2= -10 Вершина параболы y= 3x²-12x+2 находится в точке с координатами m=х=2, n=у(2)= -10
Первого примут, если он пройдет все три дистанции. а) P(1)=0,7*0,9*0,8=0,504. И не примут с вероятностью Q(1)=1-P(1)=0,496 Второго примут с вер-тью P(2)=0,9*0,8*0,6=0,432. И не примут с Q(2)=1-P(2)=0,568. Их обоих не примут с вер-тью Q(3)=Q(1)*Q(2)=0,496*0,568=0,282 б) Примут хоть одного с вер-тью P(3)=1-Q(3)=1-0,282=0,718 в) Примут обоих с вер-тью P(4)=P(1)*P(2)=0,504*0,432=0,218 Вер-сть, что 1 примут, а 2 нет p1=P(1)*Q(2)=0,504*0,568=0,286 Вер-сть, что 2 примут, а 1 нет p2=P(2)*Q(1)=0,432*0,496=0,214 г) Вер-сть, что примут только одного P(5)=p1+p2=0,286+0,214=0,5
а) f(x)=x²-6x+4;
б) f(x)=-x²-4x+1
в)f(x)=3x²-12x+2;
При вычислении воспользуйтесь формулами
m=-b/2a и n=f(-b/2a),где m и n координаты вершины параболы f(x) =ax^2+bx+c
Решение:
а) f(x)=x²-6x+4;
В приведенном уравнение b =-6, a=1
m=x=-b/2a =-(-6)/(2*1)=6/2=3
n=y(3)=3²-6*3+4=9-18+4=-5
Вершина параболы y= x² - 6x + 4 находится в точке с координатами m=х=3, n=у(3)=-5
б) f(x)=-x²-4x+1
В приведенном уравнение b =-4, a=-1
m=x=-b/2a =-(-4)/(2*(-1))=-4/2=-2
n=y(-2)=-(-2)²-4*(-2)+1=-4+8+1= 5
Вершина параболы y= -x² - 4x + 1 находится в точке с координатами m=х=-2, n=у(-2)= 5
в)f(x)=3x²-12x+2
В приведенном уравнение b =-12, a=3
m=x=-b/2a =-(-12)/(2*3)=12/6= 2
n=y(2)=3*2²-12*2+2=12-24+2= -10
Вершина параболы y= 3x²-12x+2 находится в точке с координатами m=х=2, n=у(2)= -10
а) P(1)=0,7*0,9*0,8=0,504.
И не примут с вероятностью Q(1)=1-P(1)=0,496 Второго примут с вер-тью P(2)=0,9*0,8*0,6=0,432.
И не примут с Q(2)=1-P(2)=0,568.
Их обоих не примут с вер-тью Q(3)=Q(1)*Q(2)=0,496*0,568=0,282
б) Примут хоть одного с вер-тью
P(3)=1-Q(3)=1-0,282=0,718
в) Примут обоих с вер-тью
P(4)=P(1)*P(2)=0,504*0,432=0,218
Вер-сть, что 1 примут, а 2 нет
p1=P(1)*Q(2)=0,504*0,568=0,286
Вер-сть, что 2 примут, а 1 нет
p2=P(2)*Q(1)=0,432*0,496=0,214
г) Вер-сть, что примут только одного
P(5)=p1+p2=0,286+0,214=0,5