Быстрей реши графически систему уравнений. {4x−y=3 3x+y=11 найди графически корни уравнения −x2=−1/2(дробь)x+4 . (если уравнение не имеет корней, то поставь « − », если оно имеет решение, то впиши ответ в возрастающем порядке.) ответ: x=
Какой конкретно момент непонятен? Есть дробное уравнение, когда оно будет равно нулю? -Когда числитель равен нулю, а знаменатель при этом существует, т.е. значения функции от аргумента Х не обращается в 0.
Вот как раз в первом пункте мы находим те значения X при которых числитель будет равен 0, а значит и всё уравнению будет равно 0, а во втором пункте мы проверяем, чтобы при тех значениях, которые мы нашли для числителя подставляем в знаменатель, и в случае если одно из значений даст в итоге 0, то такой X мы отбросим.
Решение: Обозначим стороны треугольника: катеты: а и в, гипотенуза с Тогда а-в=1 А из теоремы Пифагора с^2=a^2+b^2 и зная с=5 5^2=a^2+b^2 Решим данную систему уравнений: Из первого уравнения а=1+в Подставим данное а во второе уравнение и решим его: 25=(1+в)^2+b^2 25=1+2b+b^2+b^2 2b^2+2b-24=0 Чтобы решить без дискриминанта, сократим его на 2, тогда уравнение примет вид: b^2+b-12=0 х1,2=-1/2+-sqrt(1/4+12)=-1/2+-sqrt(49/4)=-1/2+-7/2 х1=-1/2+7/2=3 х2=-1/2-7/2=-4
Объяснение:
Какой конкретно момент непонятен? Есть дробное уравнение, когда оно будет равно нулю? -Когда числитель равен нулю, а знаменатель при этом существует, т.е. значения функции от аргумента Х не обращается в 0.
Вот как раз в первом пункте мы находим те значения X при которых числитель будет равен 0, а значит и всё уравнению будет равно 0, а во втором пункте мы проверяем, чтобы при тех значениях, которые мы нашли для числителя подставляем в знаменатель, и в случае если одно из значений даст в итоге 0, то такой X мы отбросим.
Обозначим стороны треугольника: катеты: а и в, гипотенуза с
Тогда а-в=1
А из теоремы Пифагора с^2=a^2+b^2 и зная с=5 5^2=a^2+b^2
Решим данную систему уравнений:
Из первого уравнения а=1+в
Подставим данное а во второе уравнение и решим его:
25=(1+в)^2+b^2
25=1+2b+b^2+b^2
2b^2+2b-24=0 Чтобы решить без дискриминанта, сократим его на 2,
тогда уравнение примет вид: b^2+b-12=0
х1,2=-1/2+-sqrt(1/4+12)=-1/2+-sqrt(49/4)=-1/2+-7/2
х1=-1/2+7/2=3
х2=-1/2-7/2=-4
ответ: х1=3; х2=-4