свободный член отвечает за подъем/спуск параболы вдоль Oy.
По теореме Виета для уравнения (решая относительно x)
Из первого уравнения видно, что корни уравнения либо оба положительные, либо один положителен, второй отрицателен. Теперь подробнее разберем второе уравнение. Если оба корня положительны, то их произведение тоже положительно. Докажем, что не может принимать отрицательных значений.
Рассмотрим функцию
это парабола с ветвями вверх. Найдем ее ординату ее вершины
значит -4 - минимальное значение функции и при любом a.
Раз оба корня могут быть только положительными, то модуль их разности будет максимален, если они будут как можно дальше друг от друга на оси Ох, т.е. вершина параболы должна быть как можно ниже. Это означает, что свободный член c должен иметь минимальное значение, а это возможно при
Функция называется чётной, если при всех значениях х в области определения этой функции при изменении знака аргумента на противоположный значение функции не изменяется, то есть y(- x) = y(x) y(x) = 4x - 3x² y(- x) = 4*(-x) - 3*(-x)² = - 4x - 3x² 4x - 3x² ≠ - 4x - 3x² значит функция не является чётной Проверим, может она нечётная, тогда должно выполняться условие y(-x) = - y(x) - y(x) = - (4x - 3x²) = - 4x + 3x² - 4x - 3x² ≠ - 4x + 3x² значит функция не является нечётной Вывод : функция y = 4x - 3x² не является ни чётной ,ни нечётной.
свободный член отвечает за подъем/спуск параболы вдоль Oy.
По теореме Виета для уравнения (решая относительно x)
Из первого уравнения видно, что корни уравнения либо оба положительные, либо один положителен, второй отрицателен. Теперь подробнее разберем второе уравнение. Если оба корня положительны, то их произведение тоже положительно. Докажем, что не может принимать отрицательных значений.
Рассмотрим функцию
это парабола с ветвями вверх. Найдем ее ординату ее вершины
значит -4 - минимальное значение функции и при любом a.
Раз оба корня могут быть только положительными, то модуль их разности будет максимален, если они будут как можно дальше друг от друга на оси Ох, т.е. вершина параболы должна быть как можно ниже. Это означает, что свободный член c должен иметь минимальное значение, а это возможно при
ответ: a=2
y(- x) = y(x)
y(x) = 4x - 3x²
y(- x) = 4*(-x) - 3*(-x)² = - 4x - 3x²
4x - 3x² ≠ - 4x - 3x² значит функция не является чётной
Проверим, может она нечётная, тогда должно выполняться условие
y(-x) = - y(x)
- y(x) = - (4x - 3x²) = - 4x + 3x²
- 4x - 3x² ≠ - 4x + 3x² значит функция не является нечётной
Вывод : функция y = 4x - 3x² не является ни чётной ,ни нечётной.