<> [ Здравствуйте, Dodododpdododp! ] <>
- - - -
<> [ • ответ и Объяснение: ] <>
<> [ Нет, Вы не правы. Оно не имеет бесконечное множество решений. Потому что: ] <>
<> [ • (x, y) = (0, 1) ] <>
<> [ А теперь, если Вы не верите, то мы можем даже и проверить, является ли упорядоченная пара чисел выше решением системы уравнений: ] <>
{ 0 + 1 = 1
{
{ 0 + 4 x 1 = 4
<> [ А у мы это так: ] <>
{ 1 = 1
{ 4 = 4
<> [ Итог: Упорядоченная пара чисел является решением системы уравнений, так как оба равенства верны. ] <>
<> [ С уважением, Hekady! ] <>
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.
<> [ Здравствуйте, Dodododpdododp! ] <>
- - - -
<> [ • ответ и Объяснение: ] <>
- - - -
<> [ Нет, Вы не правы. Оно не имеет бесконечное множество решений. Потому что: ] <>
- - - -
<> [ • (x, y) = (0, 1) ] <>
- - - -
<> [ А теперь, если Вы не верите, то мы можем даже и проверить, является ли упорядоченная пара чисел выше решением системы уравнений: ] <>
- - - -
{ 0 + 1 = 1
{
{ 0 + 4 x 1 = 4
- - - -
<> [ А у мы это так: ] <>
- - - -
{ 1 = 1
{
{ 4 = 4
- - - -
<> [ Итог: Упорядоченная пара чисел является решением системы уравнений, так как оба равенства верны. ] <>
- - - -
<> [ С уважением, Hekady! ] <>
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.