Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
у = х + 6 у = 2 - 1/3 х
Таблицы:
х -1 0 1 х -3 0 3
у 5 6 7 у 3 2 1
Координаты точки пересечения прямых (-3; 3).
Решение системы уравнений (-3; 3).
3)
Надо построить графики двух прямых:
1) х= -1 ( красный график) (прямая параллельная оси ОУ, проходящая через точку (-1;0) на оси ОХ)
2) приведём уравнение к виду y=kx+b
2x+y=3 → у= -2х+3 ( график синий)
заполним таблицу точек (для построения прямой достаточно двух)
х 0 2
у 3 -1
Координаты точки пересечения - решение данного уравнения:
Положительные числа x и y таковы, что x+2y=6. Найдите наибольшее возможное значение выражения xy .
ответ: 4,5
Объяснение: Сразу можно применить неравенство Коши: Среднее геометрическое неотрицательных чисел меньше или равно среднему арифметическому этих чисел .
* * * √(ab) ≤ (a+b) / 2 ,если a≥ 0 и b ≥ 0 притом равенство (т.е. максимальное значение ab получается , если a=b * * *
В данном примере a = x > 0 , b =2y > 0
√(x*2y) ≤ ( x+2y) / 2 равенство выполняется, если x=2y.
Решить графически систему уравнений:
1)
у = х + 6
у = 2 - 1/3 х
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
у = х + 6 у = 2 - 1/3 х
Таблицы:
х -1 0 1 х -3 0 3
у 5 6 7 у 3 2 1
Координаты точки пересечения прямых (-3; 3).
Решение системы уравнений (-3; 3).
3)
Надо построить графики двух прямых:
1) х= -1 ( красный график) (прямая параллельная оси ОУ, проходящая через точку (-1;0) на оси ОХ)
2) приведём уравнение к виду y=kx+b
2x+y=3 → у= -2х+3 ( график синий)
заполним таблицу точек (для построения прямой достаточно двух)
х 0 2
у 3 -1
Координаты точки пересечения - решение данного уравнения:
х= -1, у= 5
Положительные числа x и y таковы, что x+2y=6. Найдите наибольшее возможное значение выражения xy .
ответ: 4,5
Объяснение: Сразу можно применить неравенство Коши: Среднее геометрическое неотрицательных чисел меньше или равно среднему арифметическому этих чисел .
* * * √(ab) ≤ (a+b) / 2 ,если a≥ 0 и b ≥ 0 притом равенство (т.е. максимальное значение ab получается , если a=b * * *
В данном примере a = x > 0 , b =2y > 0
√(x*2y) ≤ ( x+2y) / 2 равенство выполняется, если x=2y.
Из x+2y=6 следует x =2y =3 иначе x =3 ; y =1,5.
max(x*y) = 3*(3/2) = 4,5 .