Решение Не выполняя построения, установите взаимное расположение графиков лин.функций: Будем проверять равенство коэффициентов при х и свободные члены y = k₁ + b₁ y = k₂x + b₂ сократим дроби 1) y=12/16x+8/10 = 3/4x + 4/5 y=15/20x+4/5 = 3/4x + 4/5 k₁ = k₂ и b₁ = b₂ Таким образом: y=12/16x+8/10 и y=15/20x+4/5 уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10 k₁ = k₂ = 8/9 значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
б)ОДЗ у≠-2; у≠0; приведем к ОЗ=у*(у+2); у²+4у=2у²+4у-у-2; перенесем влево все члены, приведем подобные, получим у²-у-2=0, по теореме. обратной теореме Виета у=2; у=-1, оба корня входят в ОДЗ.
ответ 2; -1.
в) ОДЗ =≠-2; х≠3; приведем к общему знаменателю.
(5х-2)*(х-3)=(6х-21)*(х+2);
5х²-15х-2х+6=6х²+12х-21х-42; х²+8х-48=0; По Виету х=-12; х=4, оба корня входят в ОДЗ,
ответ х=-12; х=4.
3. Рассмотрим разность левой и правой частей. неравенство будет доказано, если эта разность будет больше нуля. итак.
а) х²+2х+1-(х²+2х)=х²-х²+2х-2х+1=1>0, доказано.
б) если докажем, что разность левой и правой частей неотрицательно, то неравенство будет доказано.
Не выполняя построения, установите взаимное расположение графиков лин.функций:
Будем проверять равенство коэффициентов при х и свободные члены
y = k₁ + b₁ y = k₂x + b₂
сократим дроби
1) y=12/16x+8/10 = 3/4x + 4/5
y=15/20x+4/5 = 3/4x + 4/5
k₁ = k₂ и b₁ = b₂
Таким образом:
y=12/16x+8/10 и y=15/20x+4/5
уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10
k₁ = k₂ = 8/9
значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются
2. а) приведем к ОЗ=6, получим
9х-3х²+2х²-х-6х=0; -х²+2х=0; -х*(х-2)=0; х=0; х-2=0⇒х=2
ответ 0; 2.
б)ОДЗ у≠-2; у≠0; приведем к ОЗ=у*(у+2); у²+4у=2у²+4у-у-2; перенесем влево все члены, приведем подобные, получим у²-у-2=0, по теореме. обратной теореме Виета у=2; у=-1, оба корня входят в ОДЗ.
ответ 2; -1.
в) ОДЗ =≠-2; х≠3; приведем к общему знаменателю.
(5х-2)*(х-3)=(6х-21)*(х+2);
5х²-15х-2х+6=6х²+12х-21х-42; х²+8х-48=0; По Виету х=-12; х=4, оба корня входят в ОДЗ,
ответ х=-12; х=4.
3. Рассмотрим разность левой и правой частей. неравенство будет доказано, если эта разность будет больше нуля. итак.
а) х²+2х+1-(х²+2х)=х²-х²+2х-2х+1=1>0, доказано.
б) если докажем, что разность левой и правой частей неотрицательно, то неравенство будет доказано.
а²+1-2*(3а-4)=а²-6а+1+8=а²-6а+9=(а-3)²≥0.
Доказано.