ответ: по течению - 20 км/ч, против течения - 16 км/час.
Объяснение: пусть х - собст. скорость лодки, у - скорость течения. За 2 часа по течению лодка пройдет 2(х + у) км, а за 5 часов против течения - 5(х - у) км. Так как вместе она проплыла 120 км, имеем первое уравнение: 2(х+у) + 5(х - у) = 120.
За 7 часов против течения лодка проплыла 7(х - у) км, за 3 часа по течению - 3(х + у) км. Так как 7(х - у) больше чем 3(х + у) на 52, имеем второе уравнение: 7(х - у) - 52 = 3(х + у).
Объединяем оба уравнения в систему (см. ниже). Решая ее, получаем: х = 18 - собст. ск. л., у = 2 - ск. теч. реки. Тогда скорость по течению реки равна 18 + 2 = 20(км/ч), а против течения - 18 - 2 = 16(км/ч).
(2+a)x^2+(1-a)x+a+5=0 Рассмотрим несколько ситуаций: 1)если старший коэффициент при x^2=0 ( при а=-2): 0*x^2+3x-2+5=0 3x+3=0 3x=-3 x=-1 Значит, a=-2 нам подходит 2) если средний коэффициент равен нулю ( при а=1): 3x^2+0*x+1+5=0 3x^2+6=0 3x^2=-6 - решений нет, значит а=1 нам не подходит. 3) если а не равно -2 и не равно 1, то перед нами квадратное уравнение, которое имеет хотя бы один корень тогда, когда дискриминант >=нуля: D= (1-a)^2-4(2+a)(a+5)>=0 1-2a+a^2-4(2a+10+a^2+5a)>=0 1-2a+a^2-4(a^2+7a+10)>=0 1-2a+a^2-4a^2-28a-40>=0 -3a^2-30a-39>=0 3a^2+30a+39<=0 | :3 a^2+10a+13<=0 a^2+10a+13=0 D=10^2-4*1*13=48 a1=(-10-4V3)/2=-5-2V3 a2=-5+2V3
ответ: по течению - 20 км/ч, против течения - 16 км/час.
Объяснение: пусть х - собст. скорость лодки, у - скорость течения. За 2 часа по течению лодка пройдет 2(х + у) км, а за 5 часов против течения - 5(х - у) км. Так как вместе она проплыла 120 км, имеем первое уравнение: 2(х+у) + 5(х - у) = 120.
За 7 часов против течения лодка проплыла 7(х - у) км, за 3 часа по течению - 3(х + у) км. Так как 7(х - у) больше чем 3(х + у) на 52, имеем второе уравнение: 7(х - у) - 52 = 3(х + у).
Объединяем оба уравнения в систему (см. ниже). Решая ее, получаем: х = 18 - собст. ск. л., у = 2 - ск. теч. реки. Тогда скорость по течению реки равна 18 + 2 = 20(км/ч), а против течения - 18 - 2 = 16(км/ч).
Рассмотрим несколько ситуаций:
1)если старший коэффициент при x^2=0 ( при а=-2):
0*x^2+3x-2+5=0
3x+3=0
3x=-3
x=-1
Значит, a=-2 нам подходит
2) если средний коэффициент равен нулю ( при а=1):
3x^2+0*x+1+5=0
3x^2+6=0
3x^2=-6 - решений нет, значит а=1 нам не подходит.
3) если а не равно -2 и не равно 1, то перед нами квадратное уравнение, которое имеет хотя бы один корень тогда, когда дискриминант >=нуля:
D= (1-a)^2-4(2+a)(a+5)>=0
1-2a+a^2-4(2a+10+a^2+5a)>=0
1-2a+a^2-4(a^2+7a+10)>=0
1-2a+a^2-4a^2-28a-40>=0
-3a^2-30a-39>=0
3a^2+30a+39<=0 | :3
a^2+10a+13<=0
a^2+10a+13=0
D=10^2-4*1*13=48
a1=(-10-4V3)/2=-5-2V3
a2=-5+2V3
+[-5-2V3]-[-5+2V3]+
"-2" - входит в этот промежуток
ответ: x e [-5-2V3] U [-5+2V3]