Войти
Регистрация
Спроси ai-bota
В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Показать больше
Показать меньше
geniynayk
23.03.2021 13:54 •
Алгебра
Алгебра пәнінен бжб керек
Показать ответ
Ответ:
4Z1GGeR4
08.01.2022 16:35
1. log_0,5(x^2 +x) = -1
log_0,5(x^2 +x) = log_0,5 (2)
x^2 +x=2
x^2 +x - 2=0
По сумме коэффициентов:
x1=1 x2=c/a=-2
ОДЗ: x^2 +x>0 x(x+1)>0 x>0 x>-1
-2 не удовл. усл.
ответ: 1
2. 2log_3 (x)=log_3 (2x^2 -x)
log_3 (x^2) = log_3 (2x^2 - x)
x^2= 2x^2 -x
x^2-2x^2 +x=0
-x^2 +x=0
x(x-1)=0
x1=0
x-1=0
x=1
ОДЗ: x>3; 2x^2 -x>0 x(2x -1)>0 x>0 2x>1 x>1/2
0 и 1 не удовл. усл.
ответ: Решений нет
3. log_1/2 (x)= log_1/2 (x+3) - log_1/2 (x+1)
log_1/2 (x)= log_1/2 ((x+3)/(x+1))
x=(x+3)/(x+1)
x(x+1)/(x+1) = (x+3)/(x+1)
(x^2 +x - x -3)/(x+1) = 0
x^2 -3 = 0
x^2=3
x= +- корень из 3
x+1 (зачеркнутое равно) 0
x (зачеркнутое равно) -1
ОДЗ: x>0; x+3>0 x>-3; x+1>0 x>-1
- корень из 3 - не удовл. усл.
ответ: корень из 3
0,0
(0 оценок)
Ответ:
FJFJKD99
23.01.2023 10:11
1)
sin2x -cos²x =0 ;
2sinx*cosx -cos²x =0 ;
cosx(2sinx-cosx) =0 ;
[cosx =0 ; 2sinx-cosx=0⇒x=π/2+πn , x =arcctq2 ; n∈Z.
2)
cos2x +cos²x =0 ;
cos²x - sin²x+cos²x =0 ;
sin²x =0 ⇒sinx =0 ;
x =πn , n∈Z.
3).
2cos⁴x+3cos²x-2=0 ;
* * * замена переменной t = cos²x ; 0≤ t ≤ 1 * * *
2t²+3t-2=0 ; * * * D =3² -4*2*(-2) =25 =5² * * *
t₁ = (-3 -5)/4 = -2 не удов. 0≤ t ≤ 1.
t₂ =(-3+5)/4 =1/2⇒cos²x =1/2⇔(1+cos2x)/2 =1/2⇔cos2x=0 ⇒
2x =π/2+ πn , n∈Z ;
x = π/4+ (π/2)*n , n∈Z.
4).
2cos²x+5sinx-4=0 ;
2(1-sin²x)+5sinx-4=0 ;
2sin²x-5sinx+2=0 ; * * * D =5² -4*2*2 =25 =3² * * *
sinx = (5+3)/4 =2 не умеет решения ;
sinx = (5-3)/4 =1/2 ⇒ x =(-1)^n *(π/6) + πn , n∈Z .
5). 2cos^2x(3p/2-x)-5sin(p/2-x)-4=0 ;
2cos²(3π/2-x)-5sin(π/2-x)-4=0 ;
2sin²x -5cosx -4 = 0 ;
2(1-cos²x) -5cosx -4 = 0 ;
2cos²x +5cosx +2 = 0 ; * * *D =5² -4*2*2 =25 =3² * * *
cos²x +(2+1/2)cosx +1 = 0 ⇒[cosx =2 ; cosx =1/2 .
cosx =1/2 ;
x =±π/3 +2πn , n∈Z .
0,0
(0 оценок)
Популярные вопросы: Алгебра
PaulinaWalters
23.06.2022 21:54
Если известно, что отрезок CD= 13 мм и CD=2⋅NM, то NM= мм....
Lyuda56
19.07.2021 17:13
Упростить выражение и обчислить его значение при m=5, n=4 алгебра 8 класс...
artem0395
30.04.2023 05:50
Найдите,при каком значении переменной разность значений выражений [tex]\frac{x^{2}+1 }{5}[/tex] и [tex]\frac{x^{} }{2}[/tex] равна 0...
Иленьк
06.08.2020 14:40
Шлях довжиною 240 км катер проходить за течією річки за 8 годин, а проти течії -за 10 годин. знайдіть швидкість течії річки....
DUGLASMORFINI
04.02.2023 23:16
Перший сплав містить 10% алюмінію, другий - 30% алюмінію. з цих двох сплавів отримали третій сплав масою 200 кг, що містить 25% алюмінію. на скільки кілограмів маса...
карина2153
14.01.2021 17:25
Спортивный клуб арендует два зала.один из них имеет форму квадрата,а другой - прямоугольника,длина которого на 5 м,а ширина на 3 м больше стороны квадрата.известно,что...
FenomeN1703
06.12.2022 11:30
(4x+1)^2-16(x+2)(x-2)=17 найти корень уравнения...
ино7
02.09.2021 22:54
(an арифметическая прогрессия если а1=-7 а20=53 d-? s20-?...
dzyskristina503
07.07.2022 19:42
Найдите сумму всех двухзначных чисел 1)109 2)4905 3)99 4)4500...
milanamva00
07.02.2020 23:46
Найдите наименьший положительный период для функции: 1) y=1/2 * sin x/4 2) y= 4cos2x...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
log_0,5(x^2 +x) = log_0,5 (2)
x^2 +x=2
x^2 +x - 2=0
По сумме коэффициентов:
x1=1 x2=c/a=-2
ОДЗ: x^2 +x>0 x(x+1)>0 x>0 x>-1
-2 не удовл. усл.
ответ: 1
2. 2log_3 (x)=log_3 (2x^2 -x)
log_3 (x^2) = log_3 (2x^2 - x)
x^2= 2x^2 -x
x^2-2x^2 +x=0
-x^2 +x=0
x(x-1)=0
x1=0
x-1=0
x=1
ОДЗ: x>3; 2x^2 -x>0 x(2x -1)>0 x>0 2x>1 x>1/2
0 и 1 не удовл. усл.
ответ: Решений нет
3. log_1/2 (x)= log_1/2 (x+3) - log_1/2 (x+1)
log_1/2 (x)= log_1/2 ((x+3)/(x+1))
x=(x+3)/(x+1)
x(x+1)/(x+1) = (x+3)/(x+1)
(x^2 +x - x -3)/(x+1) = 0
x^2 -3 = 0
x^2=3
x= +- корень из 3
x+1 (зачеркнутое равно) 0
x (зачеркнутое равно) -1
ОДЗ: x>0; x+3>0 x>-3; x+1>0 x>-1
- корень из 3 - не удовл. усл.
ответ: корень из 3
sin2x -cos²x =0 ;
2sinx*cosx -cos²x =0 ;
cosx(2sinx-cosx) =0 ;
[cosx =0 ; 2sinx-cosx=0⇒x=π/2+πn , x =arcctq2 ; n∈Z.
2)
cos2x +cos²x =0 ;
cos²x - sin²x+cos²x =0 ;
sin²x =0 ⇒sinx =0 ;
x =πn , n∈Z.
3).
2cos⁴x+3cos²x-2=0 ;
* * * замена переменной t = cos²x ; 0≤ t ≤ 1 * * *
2t²+3t-2=0 ; * * * D =3² -4*2*(-2) =25 =5² * * *
t₁ = (-3 -5)/4 = -2 не удов. 0≤ t ≤ 1.
t₂ =(-3+5)/4 =1/2⇒cos²x =1/2⇔(1+cos2x)/2 =1/2⇔cos2x=0 ⇒
2x =π/2+ πn , n∈Z ;
x = π/4+ (π/2)*n , n∈Z.
4).
2cos²x+5sinx-4=0 ;
2(1-sin²x)+5sinx-4=0 ;
2sin²x-5sinx+2=0 ; * * * D =5² -4*2*2 =25 =3² * * *
sinx = (5+3)/4 =2 не умеет решения ;
sinx = (5-3)/4 =1/2 ⇒ x =(-1)^n *(π/6) + πn , n∈Z .
5). 2cos^2x(3p/2-x)-5sin(p/2-x)-4=0 ;
2cos²(3π/2-x)-5sin(π/2-x)-4=0 ;
2sin²x -5cosx -4 = 0 ;
2(1-cos²x) -5cosx -4 = 0 ;
2cos²x +5cosx +2 = 0 ; * * *D =5² -4*2*2 =25 =3² * * *
cos²x +(2+1/2)cosx +1 = 0 ⇒[cosx =2 ; cosx =1/2 .
cosx =1/2 ;
x =±π/3 +2πn , n∈Z .