Два фермера, работая вместе, могут вспахать поле за 25 часов. Производительность труда у первого и второго относятся как 2:5. Фермеры планируют работать поочередно. Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
х+у=125 2х=5у Последовательно: 2х+2у=2/25 2х-5у=0 7у=2/25 и у=2175 Тогда х=135 Итак, производительности мы нашли. Поочередно фермеры работали 45,5 часа = 91/2 часа. Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов. Уравнение: (91/2-Т)⋅(1/35)+Т⋅(2/175)=1 имеет корень Т=17,5 Проверка. 1. проверим , что х+у=125 1/35+2/175=(70+175)/(175⋅35)=7/175=1/25 2. проверим, что 2х=3у: 2/35=5⋅2/175 3. Проверим уравнение при поочередной работе: Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов 28⋅135+(352)⋅(2175)=28/35+1/5=1 ОТВЕТ: 17,5
Так как 2 и 3, 2 и 5, 3 и 5 взаимно просты, то (искомые числа - числа от 1 до 2017 которые делятся нацело на два из заявленных числе и не делятся нацело на третье) числа подчеркнутые ровно 2 раза будут числами 2*3*k, где k нацело не делится на 5, 2*5*l, где l не делится нацело на 3 и 3*5*m, где m - нацело не делится на 2 k, l m, натуральные числа
Рассмотрим первый ряд чисел 6k это числа кратные 6 (6*1, ..., 6*336) 2017=6*336+1 без учета чисел 30k* - чисел кратных 30 (30*1, .., 30*67) 2017=30*67+7 т.е. всего таких чисел будет 336-67=269
Рассмотрим второй ряд чисел 10l єто числа кратные 10 (10*1, ..., 10*201) 2017=10*201+7 без учета чисел 30l* - чисел кратных 30 (30*1, .., 30*67) 2017=30*67+7 т.е. всего таких чисел будет 201-67=134
Рассмотрим третий ряд чисел 15m єто числа кратные 15 (15*1, ..., 15*134) 2017=15*134+7 без учета чисел 30m* - чисел кратных 30 (30*1, .., 30*67) 2017=30*67+7 т.е. всего таких чисел будет 134-67=67
окончательно искомых чисел будет 269+134+67=470 ответ: 470 чисел
Два фермера, работая вместе, могут вспахать поле за 25 часов.
Производительность труда у первого и второго относятся как 2:5.
Фермеры планируют работать поочередно.
Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
Пусть Х-производительность 1-го, У-производительность 2-го.
Система:
х+у=125
2х=5у
Последовательно:
2х+2у=2/25
2х-5у=0
7у=2/25 и у=2175
Тогда х=135
Итак, производительности мы нашли.
Поочередно фермеры работали 45,5 часа = 91/2 часа.
Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов.
Уравнение:
(91/2-Т)⋅(1/35)+Т⋅(2/175)=1
имеет корень Т=17,5
Проверка.
1. проверим , что х+у=125
1/35+2/175=(70+175)/(175⋅35)=7/175=1/25
2. проверим, что 2х=3у:
2/35=5⋅2/175
3. Проверим уравнение при поочередной работе:
Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов
28⋅135+(352)⋅(2175)=28/35+1/5=1
ОТВЕТ: 17,5
(искомые числа - числа от 1 до 2017 которые делятся нацело на два из заявленных числе и не делятся нацело на третье)
числа подчеркнутые ровно 2 раза будут числами 2*3*k, где k нацело не делится на 5, 2*5*l, где l не делится нацело на 3 и 3*5*m, где m - нацело не делится на 2
k, l m, натуральные числа
Рассмотрим первый ряд чисел 6k это числа кратные 6 (6*1, ..., 6*336)
2017=6*336+1
без учета чисел 30k* - чисел кратных 30 (30*1, .., 30*67)
2017=30*67+7
т.е. всего таких чисел будет 336-67=269
Рассмотрим второй ряд чисел 10l єто числа кратные 10 (10*1, ..., 10*201)
2017=10*201+7
без учета чисел 30l* - чисел кратных 30 (30*1, .., 30*67)
2017=30*67+7
т.е. всего таких чисел будет 201-67=134
Рассмотрим третий ряд чисел 15m єто числа кратные 15 (15*1, ..., 15*134)
2017=15*134+7
без учета чисел 30m* - чисел кратных 30 (30*1, .., 30*67)
2017=30*67+7
т.е. всего таких чисел будет 134-67=67
окончательно искомых чисел будет 269+134+67=470
ответ: 470 чисел