Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.
75 (км/час) - скорость автомобиля.
Объяснение:
Формула движения: S=v*t
S - расстояние v - скорость t – время
1)Известно, какое расстояние автомобиль и автобус, двигаясь до места встречи навстречу друг другу, это 90 км.
Известно время, которое они были в пути до встречи, это 45 минут, или 45/60 = 0,75 часа.
Можно найти общую скорость (скорость сближения):
90 : 0,75 = 120 (км/час).
2)Обозначение:
х - скорость автомобиля.
у - скорость автобуса.
90/х - время автомобиля на момент приезда в пункт В.
(90-36)/у - время автобуса на этот момент.
Время оба провели в пути равное, можем составить систему уравнений:
х + у = 120
90/х = (90-36)/у
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х=120 - у
90/(120-у) = 54/у
Второе уравнение - пропорция.
Используя основное свойство пропорции, получим выражение:
90 * у = (120-у) * 54
90у=6480 - 54у
90у+54у=6480
144у=6480
у=6480/144
у=45 (км/час) - скорость автобуса.
Общая скорость известна, можно найти скорость автомобиля:
120 - 45 = 75 (км/час) - скорость автомобиля.
Проверка:
90/75 = 54/45
По основному свойству пропорции:
90*45 = 75*54
4050 = 4050, верно.
13 деталей
Объяснение:
Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.