1) квадратное уравнение с модулем будет иметь не менее трех корней если прямая а проходит через вершину параболы -(x^2-6x-5) - это верхнее значение параметра,
а нижнее а=0.
находим вершину параболы, х0=-b/2a у нам b=6 a=-1 x0=3
y0=-9+5+18=14
значит а [0;14]
2) sqrt(x-1)=a+x x>=1
x-1=x^2+a^2+2ax
x^2+(2a-1)x+a^2+1=0
D>0 (2a-1)^2-4a^2-4>0 -4a-3>0 a<-3/4
3) 4x^2-15x+4a^3=0
x1=x2^2
x1*x2=a^3
x2^3=a^3 x2=a
15/4=x1+x2 15/4=a^2+a
4a^2+4a-15=0 a1=3/2 a2=-5/2
x^2-ax+(a-1)=0
x1^2+x2^2=(x1+x2)^2-2x1x2=17
a^2-2(a-1)=17
a^2-2a-15=0
a1=5 a2=-3
1) квадратное уравнение с модулем будет иметь не менее трех корней если прямая а проходит через вершину параболы -(x^2-6x-5) - это верхнее значение параметра,
а нижнее а=0.
находим вершину параболы, х0=-b/2a у нам b=6 a=-1 x0=3
y0=-9+5+18=14
значит а [0;14]
2) sqrt(x-1)=a+x x>=1
x-1=x^2+a^2+2ax
x^2+(2a-1)x+a^2+1=0
D>0 (2a-1)^2-4a^2-4>0 -4a-3>0 a<-3/4
3) 4x^2-15x+4a^3=0
x1=x2^2
x1*x2=a^3
x2^3=a^3 x2=a
15/4=x1+x2 15/4=a^2+a
4a^2+4a-15=0 a1=3/2 a2=-5/2
x^2-ax+(a-1)=0
x1^2+x2^2=(x1+x2)^2-2x1x2=17
a^2-2(a-1)=17
a^2-2a-15=0
a1=5 a2=-3
Если исследовать, то уж как можно полнее -
ДАНО
Y= 0.25*x⁴ - 2*x² - функция
ИССЛЕДОВАНИЕ дифференциальными методами.
1. Деления на 0 - нет - функция непрерывная - D(x) - X∈(-∞;+∞).
Вертикальных асимптот - нет.
2. Поведение на бесконечности - наибольшая степень - ЧЕТВЕРТАЯ - график - парабола и более того - положительная - ветви в верх.
У(-∞) = +∞ и У(+∞) = +∞ - значения одного знака.
Горизонтальных асимптот - нет.
3. Корни функции - точки пересечения с осью Х. Надо решить уравнение
Y= x²*(x²/4 - 2 ) = 4*x²*(x² - 2) = 4*x²*(x-2√2)*(x+2√2) = 0
x₁,₂ = 0, x₃ = -2√2 ≈ -2.28, x₄ = 2√2 ≈ 2.28 - четыре корня - это правильно.
Интервалы знакопостоянства.
Положительна - Х∈(-∞;-2√2)∪(2√2;+∞)
Отрицательна - X∈(-2√2;0]∪[0;+2√2)
4. Пересечение с осью У - У(0) = 0.
5. Поиск экстремумов по первой производной.
Y'(x) = x³ - 4*x = x*(x² -4) = x*(x-2)*(x+2) = 0
Корни производной - точки экстремумов.
Максимум - Y(0) = 0
Два минимума - Y(-2) = Y(2) = -4.
6. Участки монотонности.
Убывает - Х∈(-∞;-2]∪[0;2]. Возрастает - X∈[-2;0]∪[2;+∞)
7. Поиск точек перегиба по второй производной.
Y"(x) = 3*x² - 4 = 0
Корни: x₁ = - √(4/3) ≈ - 1.15, x₂ = - √1.33 ≈ 1.15
8.
Вогнутая - "ложка" - Х∈(-∞;-1,15)∪(1,15;+∞) - вне корней.
Выпуклая - "горка" - Х∈(-1,15;1,15) - между корнями
9. Рисунок с графиками - в приложении.