Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
Задание 1:
Все уравнения являются квадратными ,кроме б) 5х - 7=0
Задание 2:
В формулу квадратного уравнения
у = ах² + bx +c ,вместо а,b и с просто подставляем данные в задании коэффициенты:
а) 3х² + 5х- 8 =0
б)х² + 10 =0
(а =1 ,значит будет 1х²,но единица не указывается перед переменной, значит пишем х² ; b = o,значит bx= 0•x = 0- не указываем в уравнении).
в) х²- 7х =0
г) х² =0
3 задание:
а)х² -256=0
х² = 256
х = ± √256
х = ± 16
б) х² = 121/81
х= ± √121/81
х= ± 11/9
в)х² + 225= 0
х² = - 225 -решения не имеет (думаю, комплексные числа Вы ещё не проходили)
г)х² -18= 0
х= 18
х= ± √18
х= ± √2•9
х= ± 3√2
д)Произведение двух множителей равно нулю,когда один из множителей равен нулю:
4у² +7у =0
у(4у +7)=0
у=0 - ((первый множитель))
4у+7=0 - ((второй множитель))
4у = -7
у = - 7/4
у = - 1 3/4
ответ: 0; - 1 3/4
е) х² -16х=0
х( х-16 )=0
х= 0
х-16= 0
х= 16
ответ : 0 ; 16.
ж) (х-3)² -9=0
(х-3)² -3² =0
(х-3 +3)(х-3 -3)=0
х(х- 6)=0
х=0
х-6 = 0
х = 6
ответ: 0 ; 6
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1