Для удобства объем бассейна обозначим v м³, х-время за которое 1 кран заполнит, у-время за которое 2 кран заполнит. запуск первого крана: он работает х/3 времени, и заполнит (v/у)*(х/3) второй аналогично : (v/х)*(у/3) 1) + =13/18v + =13/18 =13/18 39ху=х²+у² 39xy=(x+y)²-2xy 41xy=(x+y)² 2) ((v/у)+(v/х))*3 часа 36 минут=v *3.6=1 (x+y)*36=10*xy 3) q=x+y w=xy получили систему q²=41*36*q/10 q=41*36/10=147,6 10w=36*q ⇒w=3,6*q=531.36 получили систему x=147,6-y (147,6-y)*y=531.36 147,6y-y²=531.46 y²-147,6*y-531.46=0
Войти
Поиск по вопросам, ответам и авторам
Монету бросают 8 раз. Во сколько раз событие "орел выпадет ровно 6 раз" более вероятно, чем событие "орёл выпадет ровно один раз"?
·
24 сент 2018
·
64,3 K
Анастасия BonneFee
Препод-IT-шник.
По формуле Бернулли определяем вероятности для первого и второго событий:
Количество независимых испытаний n = 8; вероятности событий выпадения как орла так и решки равны q = p = 1/2.
а) Орел выпадает ровно 6 раз (k = 6)
Вероятность P1 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(6! * 2!) * (1/2)^6 * (1/2)^2 = 56/2 * (1/2)^8 = 7/64
б) Орел выпадает ровно 1 раз (k = 1)
Вероятность P2 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(1! * 7!) * (1/2)^1 * (1/2)^7 = 8 * (1/2)^8 = 2/64
Вероятность наступления события P1 больше P2 в P1/P2 = (7/64) / (2/64) = 3.5 раза.