В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
AWIKOZA
AWIKOZA
27.11.2021 00:13 •  Алгебра

А1. Найдите производную функции: а) х5+2х; б) 12х6 - 45; в) 22  хх
; г) 32 4 х3 .
А2. Найдите производную функции а) (х2 -3)(х+х3); б) х
5  х 2 .
х 1
А3. При каких значениях х значение производной функции f(x = х5+2,5х4-12
равно 0?
В1. Найдите значения х , при которых значение производной функции
f (x) 6х  х
х положительно.
х
В2. Найдите производную функции у  х
2 . 
C1. При каких значениях х производная функции у 5  3х 4 3х  13 принимает
отрицательные значения ?
С2. Найдите производную функции f (x)   х2 8х  7 при 1

Показать ответ
Ответ:
даня125
даня125
22.12.2020 21:29
Ууу, это вы хорошую задачку придумали :) Ну, то есть не вы придумали, но она мне очень нравится. 
Уравнение будет такое: 11a+14b=2013, его надо решить в целых числах.
Есть алгоритм решения таких уравнений, называются они линейными диофантовыми уравнениями, потому что изучал их Диофант, полагаю.
Так вот, сначала нужно найти НОД коэффициентов, то есть 11 и 14, так как они взаимнопросты, то  
\gcd(11,14) = 1
Потом на него надо сократить, при чём если не сократится, то решения нет. Но нам тут сокращать не на что.
Дальше надо угадать какое-то решение, одно, любое. На самом деле, оно не угадывается, а находится по алгоритму Евклида обратным ходом (есть такая ещё теорема о линейном представлении НОДа). Ну так вот, из неё 1 = 4 \times 14 -5 \times11, значит одно из решений будет таким:
a = 4\times 2013 = 8052,
b = -5 \times 2013 = -10 \ 065.
Круто, да? Подойдёт, проверьте. Это я просто домножил на 2013 представление единицы.
Вы скажете: ну это же не решение, какое-то отрицательное число!
Я вам на это скажу, что вы правы. И замечу только, что общее решение в целых числах пишется так: 
\left \{ {{a = a_0 - Bt} \atop {b=b_0+At}} \right. \Leftrightarrow \left \{ {{a = 8052 - 14t} \atop {b=-10065+11t}} \right., t \in \mathbb{Z}
И теперь последний шаг, нужно найти такие t, что оба эти числа натуральны.
\Leftrightarrow \left \{ {{8052 - 14t \ \textgreater \ 0} \atop {-10065+11t \ \textgreater \ 0}} \right., t \in \mathbb{Z} \\
\Leftrightarrow \left \{ {t \le 575} \atop {t \ \textgreater \ 915}} \right., t \in \mathbb{Z}
Ну и выходит, что нету таких t, может, я где-то ошибся, но вроде калькулятором пользовался.
Такие дела. Предмет, на котором это проходят, называется "теория чисел", а задачки такие на олимпиадах дают, там школьники это всё уже должны знать.

Знание - сила.
0,0(0 оценок)
Ответ:
akrikay13
akrikay13
22.12.2020 21:29
Уравнение будет такое
11a + 14b = 2013
Отсюда
a = (2013 - 14b)/11 = 183 - 14b/11
При этом a и b должны быть натуральными.
Значит, b делится на 11, чтобы а получилось натуральным.
Варианты:
b = 11, a = 183 - 14 = 169
b = 22, a = 183 - 14*2 = 183 - 28 = 155
b = 33, a = 183 - 14*3 = 183 - 42 = 141
b = 44, a = 183 - 14*4 = 183 - 56 = 127
b = 55, a = 183 - 14*5 = 183 - 70 = 113
b = 66, a = 183 - 14*6 = 183 - 84 = 99
b = 77, a = 183 - 14*7 = 183 - 98 = 85
b = 88, a = 183 - 14*8 = 183 - 112 = 71
b = 99, a = 183 - 14*9 = 183 - 126 = 57
b = 110, a = 183 - 14*10 = 183 - 140 = 43
b = 121, a = 183 - 14*11 = 183 - 154 = 29
b = 132, a = 183 - 14*12 = 183 - 168 = 15
b = 143, a = 183 - 14*13 = 183 - 182 = 1
Всё. ответ: 13 вариантов.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота