Не может
Объяснение:
Всего единичных кубиков: p^3.
Из них кубиков, у которых не окрашено ни одной грани: (p-2)^3.
Это куб с ребром (p-2), который находится целиком внутри большого.
Посчитаем окрашенные кубики:
1) На вершинах 8 кубиков, у которых окрашено 3 грани.
2) На 12 ребрах 12(p-2) кубиков, у которых окрашено 2 грани.
3) На 6 гранях куба 6(p-2)^2 кубиков, у которых окрашена 1 грань.
И это количество должно быть равно неокрашенным кубикам.
(p-2)^3 = 6(p-2)^2 + 12(p-2) + 8
(p-2)^3 - 6(p-2)^2 - 12(p-2) - 8 = 0
Замена p-2 = t
t^3 - 6t^2 - 12t - 8 = 0
Так как t должно быть натуральным, то оно является делителем 8.
Пробуем 2, 4 и 8:
2^3 - 6*2^2 - 12*2 - 8 = 8 - 6*4 - 24 - 8 = -48
4^3 - 6*4^2 - 12*4 - 8 = 64 - 6*16 - 48 - 8 = -88
8^3 - 6*8^2 - 12*8 - 8 = 512 - 6*64 - 96 - 8 = 512 - 384 - 104 = 24
Ни одно из целых значений не подходит, значит, так сделать нельзя.
Попробуем на всякий случай 7:
7^3 - 6*7^2 - 12*7 - 8 = 343 - 6*49 - 84 - 8 = 343 - 294 - 92 = -43
t ∈ (7, 8), и оно иррациональное.
Не может
Объяснение:
Всего единичных кубиков: p^3.
Из них кубиков, у которых не окрашено ни одной грани: (p-2)^3.
Это куб с ребром (p-2), который находится целиком внутри большого.
Посчитаем окрашенные кубики:
1) На вершинах 8 кубиков, у которых окрашено 3 грани.
2) На 12 ребрах 12(p-2) кубиков, у которых окрашено 2 грани.
3) На 6 гранях куба 6(p-2)^2 кубиков, у которых окрашена 1 грань.
И это количество должно быть равно неокрашенным кубикам.
(p-2)^3 = 6(p-2)^2 + 12(p-2) + 8
(p-2)^3 - 6(p-2)^2 - 12(p-2) - 8 = 0
Замена p-2 = t
t^3 - 6t^2 - 12t - 8 = 0
Так как t должно быть натуральным, то оно является делителем 8.
Пробуем 2, 4 и 8:
2^3 - 6*2^2 - 12*2 - 8 = 8 - 6*4 - 24 - 8 = -48
4^3 - 6*4^2 - 12*4 - 8 = 64 - 6*16 - 48 - 8 = -88
8^3 - 6*8^2 - 12*8 - 8 = 512 - 6*64 - 96 - 8 = 512 - 384 - 104 = 24
Ни одно из целых значений не подходит, значит, так сделать нельзя.
Попробуем на всякий случай 7:
7^3 - 6*7^2 - 12*7 - 8 = 343 - 6*49 - 84 - 8 = 343 - 294 - 92 = -43
t ∈ (7, 8), и оно иррациональное.
1) 2sin x-1=0
sinx = 1/2
x = (-1)^n arcsin(1/2) + πk, k∈Z
x = (-1)^n (π/6) + πk, k∈Z
2) cos(2x+П/6)+1=0
cos(2x+П/6) = - 1
2x+П/6 = π + 2πn, n∈Z
2x = π - π/6 + 2πn, n∈Z
2x = 5π/6 + 2πn, n∈Z
x = 5π/12 + πn, n∈Z
3) 6sin²x - 5cosx + 5 = 0
6(1 - cos²x) - 5cosx + 5 = 0
6 - 6cos²x - 5cosx + 5 = 0
6cos²x + 5cosx - 11 = 0
cosx = t, ItI ≤ 1
6t² + 5t - 11 = 0
D = 25 + 4*6*11 = 289
t₁ = (- 5 - 17)/12
t₁ = - 22/12
t₁ = -11/6
t₁ = - 1 (5/6) не удовлетворяет условию ItI ≤ 1
t₂ = (- 5 + 11)/12
t₂ = 1/2
cosx = 1/2
x = (+ -)arccos(1/2) + 2πm, m∈Z
x = (+ -) *(π/3) + 2πm, m∈Z