Необходимо было решить 2 первые задачи из документа, но я решил ещё и параметр, который мне понравился.
12. Необходимо решить уравнение
Формула двойного угла
А также , как известно, добавление или вычитание целого периода из аргумента тригонометрической функции ничего не меняет.
Так как в выражении в скобках присутствует половинный аргумент при , то косинус поменяется на синус, знак будет отрицательным, потому что если считать, что находится в первой координатной четверти, то при вычислении выражения в скобках значение будет в третьей четверти, где обе функции отрицательны.
Получаем уравнение , которое поделим на
Первая часть готова, осталось проанализировать каждую серию решений на принадлежность промежутку
Здесь подойдут
Анализируем 2 оставшиеся серии:
Здесь уже необходимо рассматривать отдельно.
Первое с "+" возьмем:
В последней серии решений та же логика, просто исходно дробь будет со знаком "-", значит, в обе части двойного неравенства пойдет с "+"
Теперь можно записывать ответ:
Переходим к 13. Это неравенство.
Сразу видно, что можно заменить на переменную, и тогда неравенство станет куда проще.
Если знаменатель больше нуля, то и неравенство будет больше 0. Особый случай - когда числитель равен 1, но , поэтому решением этого неравенство является
Возвращаемся к замене и решаем относительно :
Тогда получается, что и для любого неравенство выполняется.
ответ:
Решение задачи с параметром прикрепляю отдельным документом, так как мне не хватило ограничения на 5000 символов, к сожалению (
Необходимо было решить 2 первые задачи из документа, но я решил ещё и параметр, который мне понравился.
12. Необходимо решить уравнение
Формула двойного угла
А также , как известно, добавление или вычитание целого периода из аргумента тригонометрической функции ничего не меняет.
Так как в выражении в скобках присутствует половинный аргумент при , то косинус поменяется на синус, знак будет отрицательным, потому что если считать, что находится в первой координатной четверти, то при вычислении выражения в скобках значение будет в третьей четверти, где обе функции отрицательны.
Получаем уравнение , которое поделим на
Первая часть готова, осталось проанализировать каждую серию решений на принадлежность промежутку
Здесь подойдут
Анализируем 2 оставшиеся серии:
Здесь уже необходимо рассматривать отдельно.
Первое с "+" возьмем:
В последней серии решений та же логика, просто исходно дробь будет со знаком "-", значит, в обе части двойного неравенства пойдет с "+"
Теперь можно записывать ответ:
Переходим к 13. Это неравенство.
Сразу видно, что можно заменить на переменную, и тогда неравенство станет куда проще.
Если знаменатель больше нуля, то и неравенство будет больше 0. Особый случай - когда числитель равен 1, но , поэтому решением этого неравенство является
Возвращаемся к замене и решаем относительно :
Тогда получается, что и для любого неравенство выполняется.
ответ:
Решение задачи с параметром прикрепляю отдельным документом, так как мне не хватило ограничения на 5000 символов, к сожалению (
Объяснение:
Область определения
1 + √3*tg x ≠ 0
tg x ≠ - 1/√3
x ≠ -Π/6 + Πk, k € Z
Теперь решаем само уравнение. Умножаем на знаменатель, не равный 0.
√3 - tg x = 1 + √3*tg x
√3 - 1 = √3*tg x + tg x = tg x*(√3 + 1)
tg x = (√3-1) / (√3+1)
Домножим числитель и знаменатель на (√3-1), в знаменателе будет разность квадратов.
tg x = (√3-1)^2 / (3-1) = (3-2√3+1)/2 = 2 - √3
x = arctg (2-√3) + Πk, k € Z
Число 2-√3 ≈ 2-1,732 = 0,268 > 0
На отрезке [-Π; 2Π] ≈ [-3,14; 6,28] будет 3 корня:
x1 = arctg(2-√3) - Π - наименьший корень
x2 = arctg(2-√3)
x3 = arctg(2-√3) + Π - наибольший корень