1) Если две стороны треугольника равны 3 и 5, то его третья сторона больше 3.
Пусть а третья сторона, то по неравенству треугольника сумма любых двух сторон больше третьей стороны:
а+3>5
a+5>3 - выполнено
3+5>a
Тогда 3+5=8>а>5-3=2, и достаточно а>2, например а=2,1. Поэтому утверждение НЕВЕРНО!
2) Внешний угол треугольника равен сумме двух его внутренних углов.
Утверждение НЕВЕРНО, так как внешний угол треугольника равен сумме его внутренних, не смежных с ним, углов.
3) Если две стороны и угол одного треугольника соответственно равны двум сторонам и углу другого треугольника, то такие треугольники равны.
Утверждение НЕВЕРНО, так как по первому признаку равенства треугольников необходимо "угол между ними".
4) Если две стороны треугольника равны 3 и 4, то его третья сторона меньше 7.
Пусть а третья сторона, то по неравенству треугольника сумма любых двух сторон больше третьей стороны:
Пусть для перевозки запланировали х машин
Тогда грузоподъемность одной планировалась как (200:х)т.
По факту грузоподъемность получилась (200:х)-2 т.
А машин потребовалось (х+5)
Получим уравнение
200/(х+5)= (200/х ) -2
200/(х+5)= (200 -2х) /х
200х=(200-2х)(х+5)
200х=200х-2х²+1000-10х
2х²+10х-1000=0
х²+5х-500=0
D= 25+2000=2025 √D=45
x1= (-5+45):2=20 машин планировалось
х2=(-5-45):2= -25 <0 не подходит
Фактически использовали 20+5=25 машин
Планировалось перевозить по
200/20=10 тонн на каждой машине.
4
Объяснение:
1) Если две стороны треугольника равны 3 и 5, то его третья сторона больше 3.
Пусть а третья сторона, то по неравенству треугольника сумма любых двух сторон больше третьей стороны:
а+3>5
a+5>3 - выполнено
3+5>a
Тогда 3+5=8>а>5-3=2, и достаточно а>2, например а=2,1. Поэтому утверждение НЕВЕРНО!
2) Внешний угол треугольника равен сумме двух его внутренних углов.
Утверждение НЕВЕРНО, так как внешний угол треугольника равен сумме его внутренних, не смежных с ним, углов.
3) Если две стороны и угол одного треугольника соответственно равны двум сторонам и углу другого треугольника, то такие треугольники равны.
Утверждение НЕВЕРНО, так как по первому признаку равенства треугольников необходимо "угол между ними".
4) Если две стороны треугольника равны 3 и 4, то его третья сторона меньше 7.
Пусть а третья сторона, то по неравенству треугольника сумма любых двух сторон больше третьей стороны:
а+3>4
a+4>3 - выполнено
3+4>a
Тогда 3+4=7>а>4-3=1, и поэтому утверждение ВЕРНО.