В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
MissVika2007
MissVika2007
27.03.2023 10:02 •  Алгебра

(а-1)x=2
для каждого значения а решите уравнение ​

Показать ответ
Ответ:
willzymustdie
willzymustdie
13.04.2021 19:20

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

0,0(0 оценок)
Ответ:
Alisa45612
Alisa45612
21.08.2022 17:25
Исследовать функцию: f(x)= \frac{x^2+1}{2x}
    • Область определения функции:
               x\ne 0\\ D(f)=(-\infty;0)\cup(0;+\infty)
• Точки пересечения с осью Ох и Оу:
     Точки пересечения с осью Ох: нет.
     Точки пересечения с осью Оу: Нет.
• Периодичность функции.
     Функция  не периодическая.
• Критические точки, возрастание и убывание функции:
    1. Производная функции:
f'(x)= \frac{(x^2+1)'\cdot 2x-(x^2+1)\cdot(2x)'}{(2x)^2} = \frac{x^2-1}{x^2}
    2. Производная равна 0.
f'(x)=0;\,\,x^2-1=0;\,\,\,\,\Rightarrow\,\,\,\,x=\pm1

___-__(-1)____+__(0)____-___(1)___+___

х=-1 - точка минимума
х=1 - точка минимума

f(1) = 1 - Относительный минимум
f(-1) = -1 - Относительный минимум

Функция возрастает на промежутке: x ∈ (-1;0) и (1;+∞), а убывает на промежутке: (-∞;-1) и (0;1).

• Точка перегиба:
  f''(x)= \frac{(x^2-1)'2x^2-(x^2-1)\cdot(2x^2)'}{(2x^2)^2} = \frac{1}{x^3}
Очевидно что точки перегиба нет, т.к. f''(x)\ne 0

• Вертикальные асимптоты: x=0.

• Горизонтальные асимптоты: \lim_{x\to \pm \infty} f(x)=\pm \infty

• Наклонные асимптоты: \lim_{x \to \infty} ( \frac{1}{2x} +0.5x)=0.5x

График приложен
Исследовать функцию и составить график (x^2+1)/2x расписать!
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота