/9 класс 1. у васи и пети по 12 монет достоинствами 1 руб., 2 руб., 5 руб. у каждого. сумма денег у васи в два раза больше, чем у пети. сколько денег у пети, если монет по 2руб. у него столько, сколько у васи по 5 руб., а монет по 5 руб. столько, сколько у васи по 1 руб.? а. 50 руб. б. 48 руб. в. 24 руб. г. 25 руб. 2. известно, что общая масса трёх учеников не менее 120 кг. когда их взвесили по двое, то весы показали не более 100 кг, не более 80 кг и не более 60 кг. каковы массы этих учащихся? 3. может ли шар, лежащий возле борта на бильярдном столе прямоугольной формы после удара кием отразиться сначала от одного борта, затем от соседнего и пройти через исходное положение, если отражение от борта происходит по закону: угол падения равен углу отражения? 4. в футбольном турнире 14 команд сыграли между собой 6 туров — каждая ко- манда сыграла с шестью разными . обязательно ли найдутся три команды, не сыгравшие между собой пока ни одного матча? в 2-4 хотя бы небольшое решение, .
Пусть у Васи х монет по 5 рублей, у монет по 1 рублю, (12-х-у) монет по 2 рубля.
Тогда у Пети х монет по 2 рубля, у монет по 5 рублей и (12-х-у) монет по 1 рублю.
Общая сумма денег Васи:
у+2·(12-х-у)+5х
Общая сумма денег Пети:
(12-х-у)+2х+5у
По условию у Васи в два раза больше. Составляем уравнение
у+2·(12-х-у)+5х=2·((12-х-у)+2х+5у)
у+24-2х-2у+5х=24-2х-2у+4х+10у
х=9у
т.е монет достоинством 5 рублей у Васи в 9 раз меньше, чем монет по 1 рублю.
Вывод.
У Васи 9 монет по 5 рублей, 1 монета по 1 рублю, (12-1-9)=2 монеты по 2 рубля.
Тогда у Пети 1 монета по 5 рублей, 9 монет по 2 рубля и 2 монеты по 1 рублю.
У Вас 45+1+4=50 рублей
У Пети 5+18+2=25 рублей.
2. Пусть А, В и С - масса каждого из трёх учеников.
По условию
А+В+С ≥ 120 кг.
А+В≤100 кг,
А+С≤ 80 кг
В+С≤ 60 кг.
Складываем
(А+В)+(А+С)+(В+С)≤240;
2(А+В+С)≤240 ⇒ А+В+С≤120
А+В+С≤120 и А+В+С≥120 ⇒ А+В+С=120
А+В≤100 ⇒С≥20
А+С≤80 ⇒А≥40
В+С≤60⇒ В≥60
А+В+С=120 ⇒ А=40; С=20; В=60
3.
Да может. См. рисунок.
4.
Каждая команда должна сыграть с 13 командами.
Всего 14·13/2= 91 матч
Сыграно 14·6/2=42 матча.
Каждая команда сыграла с одной из шести команд и не сыграла с одной из трех.
Найдутся. Не знаю как объяснить?