2x²-4х+b=0 Это решается по дискриминанту вот формула D = b² - 4ac где а - это то число где x² где b - это то число где x где c - это то число где нет x Подставляем значения под формулу D = 4² - 4 * 2 * b = 16 - 8b = 8b дальше находим x1 и x2 по формуле х1= -b + квадратный корень из дискриминанта делим на 2а х2= -b - квадратный корень из дискриминанта делим на 2а Так же : если дискриминант отрицательный то корней нет если дискриминант равен нулю то корень только один если дискриминант больше нуля то уравнение имеет два корня
Это решается по дискриминанту
вот формула D = b² - 4ac
где а - это то число где x²
где b - это то число где x
где c - это то число где нет x
Подставляем значения под формулу
D = 4² - 4 * 2 * b = 16 - 8b = 8b
дальше находим x1 и x2
по формуле
х1= -b + квадратный корень из дискриминанта
делим на 2а
х2= -b - квадратный корень из дискриминанта
делим на 2а
Так же :
если дискриминант отрицательный то корней нет
если дискриминант равен нулю то корень только один
если дискриминант больше нуля то уравнение имеет два корня
1) Точки экстремума - это точки, в которых производная = 0 или не существует.
Значит, надо искать производную. Сработает формула:
(U/V)' = (U'V - UV')/V²
Начнём.
y'= (-2(x+1) - (3-2x) )/(x+1)² = -5/(х+1)²
Эта производная не равна нулю. Но при х = -1 она не существует.
ответ: х = -1 это точка разрыва.
2)план наших действий:
ищем производную
приравниваем к нулю и решаем уравнение;
Смотрим, какие корни попали в указанный промежуток;
ищем значения функции в этих точках и на концах промежутка;
пишем ответ.
Поехали?
y'= -2/(х² +4)² * 2х= -4х/(х² +4)²
-4х/(х² +4)² = 0, ⇒ х = 0; 0∈[-10;10]
a) x = 0
y = 2/4 = 0,5
x = -10
y = 2/104
х = 10
у = 2/104
ответ: max y = 0,5
min y = 2/104 = 1/52