Смотрим на левую часть неравенства. Представим по формуле (х-3)^2= x^2-6x+9
Смотрим на правую часть неравенства "Открываем" скобки:) х (х-6)= x^2-6x
Вот и всё, что нужно для доказательства.
Записываем неравенство после проделанных преобразований/ Преобразования производились корректные, допустимые...т.е. на знак неравенства они повлиять не могли x^2-6x+9 > x^2-6x
Сокращаеми получаем 9 > 0...что является истиной и безусловно доказывает первичное неравенство.
х(х-6)=х^2-6х
левая часть больше правой на 9
Представим по формуле
(х-3)^2= x^2-6x+9
Смотрим на правую часть неравенства
"Открываем" скобки:)
х (х-6)= x^2-6x
Вот и всё, что нужно для доказательства.
Записываем неравенство после проделанных преобразований/
Преобразования производились корректные, допустимые...т.е. на знак неравенства они повлиять не могли
x^2-6x+9 > x^2-6x
Сокращаеми получаем
9 > 0...что является истиной и безусловно доказывает первичное неравенство.