Пусть собственная скорость катера - х км/ч, тогда скорость катера по течению - (х+2)км/ч, скорость катера против течения - (х-2)км/ч 20/(х+2)+32/(х-2)=3, умножим обе части уравнения на (х²-4) 20х-40+32х+64-3х²+12=0 3х²-52х-36=0, D₁=676+108=784=28², х₁=(26+28)/3=18, х₂=(26-28)/3=-2/3 - не удовл условию задачи, ответ: 18км/ч
Пусть числитель дроби - х, знаменатель - (х+5) х/(х+5)=(х+2)/(х+3)-18/35 Умножим обе части уравнения на (х+5)(х+3)35 35х²+105х-35х²-245х-350+18х²+144х+270=0 18х²+4х-80=0 9х²+2х-40=0 D₁=1+360=361=19² x₁=(-1+19)/9=2 x₂=(-1-19)/9=-20/9 не удовл условию задачи ответ: 2/5
20/(х+2)+32/(х-2)=3, умножим обе части уравнения на (х²-4)
20х-40+32х+64-3х²+12=0
3х²-52х-36=0, D₁=676+108=784=28², х₁=(26+28)/3=18, х₂=(26-28)/3=-2/3 - не удовл условию задачи,
ответ: 18км/ч
Пусть числитель дроби - х, знаменатель - (х+5)
х/(х+5)=(х+2)/(х+3)-18/35
Умножим обе части уравнения на (х+5)(х+3)35
35х²+105х-35х²-245х-350+18х²+144х+270=0
18х²+4х-80=0
9х²+2х-40=0 D₁=1+360=361=19²
x₁=(-1+19)/9=2 x₂=(-1-19)/9=-20/9 не удовл условию задачи
ответ: 2/5
sinx=t |t|≤1
t²-t-2=0
t1=2 - посторонний корень
t2=-1
sinx=-1
x=-pi/2+2pi*n
2)2-2sin²x-sinx-1=0
-2sin²x-sinx+1=0
sinx=t |t|≤1
-2t²-t+1=0
t1=-1
t2=1/2
sinx=-1 sinx=1/2
x=-pi/2+2pi*n x=(-1)^n*pi/6+pi*n
3) 4cos2x-sin2x=0 (однородное уравнение 1 степени - поделим обе части уравнения на cos2x≠0)
4-tg2x=0
tg2x=4
2x=arctg4+pi*n
x=1/2*arctg4+pi*n/2
4)sin²x-5sinxcosx+4cos²x=0 (однородное уравнение второй степени - поделим на cos²x≠0)
tg²x-5tgx+4=0
tgx=1 tgx=4
x=pi/4+pi*n x=arctg4+pi*n
5)2cos2x*cosx+cos2x=0
cos2x(2cosx+1)=0
cos2x=0 2cosx+1=0
2x=pi*n cosx=-1/2
x=pi*n/2 x=+-2pi/3+2pi*n